Skip to main content
Log in

Spatial properties of second-order vestibulo-ocular relay neurons in the alert cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Second-order vestibular nucleus neurons which were antidromically activated from the region of the oculomotor nucleus (second-order vestibuloocular relay neurons) were studied in alert cats during whole-body rotations in many horizontal and vertical planes. Sinusoidal rotation elicited sinusoidal modulation of firing rates except during rotation in a clearly defined null plane. Response gain (spikes/s/deg/s) varied as a cosine function of the orientation of the cat with respect to a horizontal rotation axis, and phases were near that of head velocity, suggesting linear summation of canal inputs. A maximum activation direction (MAD) was calculated for each cell to represent the axis of rotation in three-dimensional space for which the cell responded maximally. Second-order vestibuloocular neurons divided into 3 non-overlapping populations of MADs, indicating primary canal input from either anterior, posterior, or horizontal semicircular canal (AC, PC, HC cells). 80/84 neurons received primary canal input from ipsilateral vertical canals. Of these, at least 6 received input from more than one vertical canal, suggested by MAD azimuths which were sufficiently misaligned with their primary canal. In addition, 21/80 received convergent input from a horizontal canal, with about equal number of type I and type II yaw responses. 4/84 neurons were HC cells; all of them received convergent input from at least one vertical canal. Activity of many vertical second-order vestibuloocular neurons was also related to vertical and/or horizontal eye position. All AC and PC cells that had vertical eye position sensitivity had upward and downward on-directions, respectively. A number of PC cells had MADs centered around the MAD of the superior oblique muscle, and 2/3 AC cells recorded in the superior vestibular nucleus had MADs near that of the inferior oblique. Thus, signals with spatial properties appropriate to activate oblique eye muscles are present at the second-order vestibular neuron level. In contrast, none of the second-order vestibuloocular neurons had MADs near those of the superior or inferior rectus muscles. Signals appropriate to activate these eye muscles might be produced by combining signals from ipsilateral and contralateral AC neurons (for superior rectus) or PC neurons (for inferior rectus). Alternatively, less direct pathways such as those involving third or higher order vestibular or interstitial nucleus of Cajal neurons might play a crucial role in the spatial transformations between semicircular canals and vertical rectus eye muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JH, Precht W, Pappas C (1979) Changes in the vertical vestibulo-ocular reflex due to kainic acid lesions of the interstitial nucleus of Cajal. Neurosci Lett 14:259–264

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Goldberg J, Hermann G, Peterson B (1984a) Optimal response planes and canal convergence in secondary neurons in vestibular nuclei of alert cats. Brain Res 294:133–137

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Goldberg J, Herman G, Peterson B (1984b) Spatial and temporal response properties of secondary neurons receiving convergent input in vestibular nuclei of alert cats. Brain Res 294:138–143

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Goldberg J, Peterson B (1985) Spatial and temporal response properties of the vestibulocollic reflex in decerebrate cats. J Neurophysiol 54:735–756

    PubMed  CAS  Google Scholar 

  • Baker JF, Wickland C, Goldberg J, Peterson B (1988) Motor output to lateral rectus in cats during the vestibulo-ocular reflex in three-dimensional space. Neuroscience 25:1–12

    Article  PubMed  CAS  Google Scholar 

  • Billoto G, Goldberg J, Peterson BW, Wilson VJ (1982) Dynamic properties of vestibular reflexes in the decerebrate cat. Exp Brain Res 47:343–352

    Google Scholar 

  • Blanks RHI, Curthoys IS, Markham CH (1972) Planar relationships of semicircular canals in the cat. Am J Physiol 223:55–62

    PubMed  CAS  Google Scholar 

  • Blanks RHI, Estes MS, Markham CH (1975) Physiologic characteristics of vestibular first-order canal neurons in the cat. II. Response to constant angular acceleration. J Neurophysiol 38:1250–1267

    PubMed  CAS  Google Scholar 

  • Chubb MC, Fuchs AF, Scudder CA (1984) Neuron activity in monkey vestibular nuclei during vertical vestibular stimulation and eye movements. J Neurophysiol 52:724–742

    PubMed  CAS  Google Scholar 

  • Curthoys IS, Markham CH (1971) Convergence of labyrinthine influences on units in the vestibular nuclei of the cat. I. Natural stimulation. Brain Res 35:469–490

    Article  PubMed  CAS  Google Scholar 

  • Delgado-Garcia JM, Del Pozo F, Baker R (1986) Behavior of neurons in the abducens nucleus of the alert cat. 1. Motoneurons. Neuroscience 17:929–952

    Article  PubMed  CAS  Google Scholar 

  • Duensing F, Schaefer K-P (1958) Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontal-Beschleunigungen unter besonderer Berücksichtigung des vestibularen Nystagmus. Arch Psychiat Nervenkr 198:225–252

    Article  PubMed  CAS  Google Scholar 

  • Estes MS, Blanks RHI, Markham H (1975) Physiologic characteristics of vestibular first-order canal neurons in the cat. I. Response plane determination and resting discharge characteristics. J Neurophysiol 38:1232–1249

    PubMed  CAS  Google Scholar 

  • Ezure K, Graf W (1984) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateral- and frontal-eyed animals. I. Orientation of semicircular canals and extraocular muscles. Neuroscience 12:85–93

    Article  PubMed  CAS  Google Scholar 

  • Fernandez C, Goldberg JM (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. II. Response to sinusoidal stimulation and dynamics of peripheral vestibular system. J Neurophysiol 34:661–675

    PubMed  CAS  Google Scholar 

  • Fukushima K (1987) The interstitial nucleus of Cajal and its role in the control of movement of head and eyes. Prog Neurobiol 29:107–192

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Harada C, Fukushima J, Suzuki Y (1990) Spatial properties of vertical eye movement-related neurons in the region of the interstitial nucleus of Cajal in awake cats. Exp Brain Res 79:25–42

    PubMed  CAS  Google Scholar 

  • Graf W, Ezure K (1986) Morphology of vertical canal related second order vestibular neurons in the cat. Exp Brain Res 63:35–48

    Article  PubMed  CAS  Google Scholar 

  • Graf W, McCrea RA, Baker R (1983) Morphology of posterior canal related secondary vestibular neurons in rabbit and cat. Exp Brain Res 52:125–138

    Article  PubMed  CAS  Google Scholar 

  • Kaneko CRS (1986) Location and discharge of saccade-related neurons in alert cat and monkey: developments in oculomotor research. Satellite Meeting of Internat Union of Physiological Sciences (Abstr)

  • Kasahara M, Uchino Y (1974) Bilateral semicircular canal inputs to neurons in cat vestibular nuclei. Exp Brain Res 20:285–296

    Article  PubMed  CAS  Google Scholar 

  • Kasper J, Schor RH, Wilson VJ (1988) Response of vestibular neurons to head rotations in vertical planes. I. Response to vestibular stimulation. J Neurophysiol 60:1753–1764

    PubMed  CAS  Google Scholar 

  • King WM, Fuchs AF, Magnin M (1981) Vertical eye movement-related responses of neurons in midbrain near interstitial nucleus of Cajal. J Neurophysiol 46:549–562

    PubMed  CAS  Google Scholar 

  • King WM, Lisberger SG, Fuchs AF (1976) Responses of fibers in medial longitudinal fasciculus (MLF) of alert monkeys during horizontal and vertical conjugate eye movements evoked by vestibular or visual stimuli. J Neurophysiol 39:1135–1149

    PubMed  CAS  Google Scholar 

  • Markham CH, Curthoys IS (1972) Convergence of labyrinthine influences on units in the vestibular nuclei of the cat. II. Electrical stimulation. Brain Res 43:383–396

    Article  PubMed  CAS  Google Scholar 

  • McCrea RA, Strassman A, Highstein SM (1987) Anatomical and physiological characteristics of vestibular neurons mediating the vertical vestibulo-ocular reflexes of the squirrel monkey. J Comp Neurol 264:571–594

    Article  PubMed  CAS  Google Scholar 

  • Nakao S, Shiraishi Y, Oikawa T (1987) Vertical eye movement-related neurons in the cat mesodiencephalic junction: synaptic input from and output to the vestibular nuclei. Neurosci Res Suppl Abstr 5:S73

    Article  Google Scholar 

  • Perlmutter SI, Fukushima K, Peterson BW, Baker JF (1988) Spatial properties of second order vestibuloocular relay neurons in the alert cat. Soc Neurosci Abstr 14:331

    Google Scholar 

  • Peterson BW, Baker JF, Goldberg J, Wickland C (1984) Kinematic organization of cat vestibulo-ocular reflex (VOR). Soc Neurosci Abstr 10:162

    Google Scholar 

  • Peterson BW, Baker JF, Wickland C (1986) Plastic changes in cervicoocular and vestibuloocular reflexes elicited by labyrinthine lesions or altered visual feedback. In: Keller EL, Zee DS (eds) Adaptive processes in visual and oculomotor systems: advances in the biosciences, Vol 57. Pergamon Press, Oxford, pp 399–408

    Google Scholar 

  • Peterson BW, Graf W, Baker JF (1987) Spatial properties of signals carried by second order vestibuloocular relay neurons in the cat. Soc Neurosci Abstr 13:1093

    Google Scholar 

  • Pola J, Robinson DA (1978) Oculomotor signals in medial longitudinal fasciculus of the monkey. J Neurophysiol 41:245–259

    PubMed  CAS  Google Scholar 

  • Robinson DA (1970) Oculomotor unit behavior in the monkey. J Neurophysiol 33:393–404

    PubMed  CAS  Google Scholar 

  • Robinson DA (1982) The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern 46:53–66

    Article  PubMed  CAS  Google Scholar 

  • Schultheis LW, Robinson DA (1982) Directional plasticity of the vestibulo-ocular reflex in the cat. In: Cohen B (ed) Vestibular and oculomotor physiology. Internat meeting Barany Society. New York Academy of Sciences, pp 20–30

  • Shimazu H, Precht W (1965) Tonic and kinetic responses of cat's vestibular neurons to horizontal angular acceleration. J Neurophysiol 28:991–1013

    PubMed  CAS  Google Scholar 

  • Tomlinson RD, Robinson DA (1984) Signals in vestibular nucleus mediating vertical eye movements in the monkey. J Neurophysiol 51:1121–1136

    PubMed  CAS  Google Scholar 

  • Uchino Y, Hirai N, Suzuki S, Watanabe S (1981) Properties of secondary vestibular neurons fired by stimulation of ampullary nerve of the vertical, anterior or posterior, semicircular canals in the cat. Brain Res 223:273–286

    Article  PubMed  CAS  Google Scholar 

  • Uchino Y, Hirai N, Suzuki S (1982) Branching pattern and properties of vertical- and horizontal-related excitatory vestibuloocular neurons in the cat. J Neurophysiol 48:891–903

    PubMed  CAS  Google Scholar 

  • Uchino Y, Ichikawa T, Isu N, Nakashima H, Watanabe S (1986) The commissural inhibition on secondary vestibulo-ocular neurons in the vertical semicircular canal systems in the cat. Neurosci Lett 70:210–216

    Article  PubMed  CAS  Google Scholar 

  • Uchino Y, Suzuki S, Watanabe S (1980) Vertical semicircular canal inputs to cat extraocular motoneurons. Exp Brain Res 41:45–53

    Article  PubMed  CAS  Google Scholar 

  • Wilson VJ, Felpel LP (1972) Specificity of semicircular canal input to neurons in the pigeon vestibular nuclei. J Neurophysiol 35:253–264

    PubMed  CAS  Google Scholar 

  • Wilson VJ, Peterson BW, Fukushima K, Hirai N, Uchino Y (1979) Analysis of vestibulocollic reflexes by sinusoidal polarization of vestibular afferent fibers. J Neurophysiol 42:331–346

    PubMed  CAS  Google Scholar 

  • Yoshida K, Berthoz A, Vidal PP, McCrea R (1981) Eye-movement-related activity of identified second order vestibular neurons in the cat. In: Fuchs AF, Becker W (eds) Progress in oculomotor research: developments in neuroscience. Vol. 12. Elsevier, North-Holland, pp 371–378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukushima, K., Perlmutter, S.I., Baker, J.F. et al. Spatial properties of second-order vestibulo-ocular relay neurons in the alert cat. Exp Brain Res 81, 462–478 (1990). https://doi.org/10.1007/BF02423495

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02423495

Key words

Navigation