Skip to main content
Log in

Biomechanics at the cellular level

The ALZA distinguished lecture

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The mechanical behavior of individual cells presents a variety of problems of interest in many different biologic phenomena. The rheology of single red blood cells is well developed, and passive properties of leukocytes and endothelial cells are currently being explored. Dynamic aspects of single-cell mechanics, including growth, cell division, active motion, contractile mechanisms, phagocytosis, and locomotion, offer many challenging aspects to be analyzed. Transduction mechanisms of neurosensory cells and mechanical stresses and damage of neural structures are relatively unexplored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bessis, M.Living Blood Cells and Their Ultrastructure. Berlin, Springer-Verlag, 1973, pp. 1–180.

    Google Scholar 

  2. Childress, S. Models of cell interaction based on differential adhesion.J. Biomech. Eng. 106:36–41, 1984.

    CAS  PubMed  Google Scholar 

  3. Erdogan, F. Crack-propagation theories. In:Fracture, edited by H. Liebowitz New York: Academic Press, 1968, vol. 2, pp. 497–590.

    Google Scholar 

  4. Evans, E.A. and R. Skalak.Mechanics and Thermodynamics of Biomembranes. Boca Raton: CRC Press, 1980, p. 148.

    Google Scholar 

  5. Fischer, T.M. and H. Schmid-Schönbein. Tank tread motion of red cell membranes in viscometric flow: behavior of intracellular and extracellular markers.Blood Cells 3:351–365, 1977.

    Google Scholar 

  6. Gaehtgens, P., C. Dugressen, and K.H. Albrecht. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes.Blood Cells 6:799–812, 1980.

    CAS  PubMed  Google Scholar 

  7. Hooke, R.,Micrographia. London: Martyn and Allestry Printers, 1665, pp. 114–115.

    Google Scholar 

  8. Hsuing, C.C. Mechanics of endothelial cell junctions. PhD. thesis. Columbia University New York, 1984.

  9. Hudspeth, A.J. The hair cells of the inner ear.Sci. Am. 248:54–73 1983.

    CAS  PubMed  Google Scholar 

  10. Huxley, H.E., D. Bray, and A.G. Weeds, editors.Molecular Biology of Cell Locomotion. Cambridge: University Press, 1982, pp. 313–327.

    Google Scholar 

  11. Keller, S.R. and R. Skalak. Motion of a tank-treading ellipsoidal particle in a shear flow.J. Fluid Mech. 120:24–37, 1982.

    Google Scholar 

  12. Lasek, R.J. Translocation of the neuronal cytoskeleton and axonal locomotion.Philos. Trans. R. Soc. Lond. Ser. B. 299:313–327, 1982.

    CAS  Google Scholar 

  13. Leeuwenhoek, A.V.On the Circulation of Blood. Facsimile with introduction by A. Schierbeek. 65th letter to the Royal Society, 1688. London: N.B. Graaf, 1962, pp. 165–186.

    Google Scholar 

  14. Loewenstein, W.R. Junctional intercellular communication and control of growth.Biochim. Biophys. Acta. 560:1–65, 1979.

    CAS  PubMed  Google Scholar 

  15. Loewenstein W.R. and R. Skalak. Mechanical transmission in a Pacinian corpuscle. An analysis and a theory.J. Physiol. 182:346–378, 1966.

    CAS  PubMed  Google Scholar 

  16. Marks, R. and P.A. Payne, editors.Bioengineering and the Skin. Boston: MTP Press, 1981, pp. 147–158.

    Google Scholar 

  17. McDonald, D.A.Blood Flow in Arteries. London: Edward Arnold 1960, pp. 118–173.

    Google Scholar 

  18. Meiselman, H.J., M.A. Lichtman, and P.L. La Celle, editors.White Cell Mechanics: Basic Science and Clinical Aspects. New York: Alan R. Liss. Inc., 1984, pp. 1–51.

    Google Scholar 

  19. Schmid-Schönbein, G.W. and R. Skalak, editors. Mechanics of single cells: A symposium.J. Biomech. Eng. 106:1–41, 1984.

    Google Scholar 

  20. Schmid-Schönbein, G.W. and R. Skalak. Continuum mechanical model of leukocytes during protopod formation.J. Biomech. Eng. 106:11–18, 1984.

    Google Scholar 

  21. Schroeder, T.E. Dynamics of the contractile ring. In:Molecules and Cell Movement, edited by S. Inoue and R.E. Stephens. New York: Raven Press, 1975, pp. 305–334.

    Google Scholar 

  22. Schwann, T.,Microscopical Researches into the Accordance of Structure and Growth of Animals and Plants. Translated by H. Smith. London: C. and J. Adlard, Printers, 1847, pp. 1–268.

    Google Scholar 

  23. Shinozuka, M., T. Tsuri, T. Naganuma, M.L. Moss, and L. Moss-Salentijn. A stochastic-mechanical model of longitudinal long bone growth.J. Theor. Biol. 108:413–436, 1984.

    CAS  PubMed  Google Scholar 

  24. Simionescu, M., N. Simionescu, and G.E. Palade. Segmented differentiations of cell junctions in the vascular endothelium.J. Cell Biol. 68:705–723, 1976.

    Article  CAS  PubMed  Google Scholar 

  25. Singer, C.A Short History of Biology. Oxford: Clarendon Press, 1931, pp. 330–335.

    Google Scholar 

  26. Skalak, R., P.R. Zarda, K.M. Jan, and S. Chien. Theory of rouleau formation. In:Cardiovascular and Pulmonary Dynamics, edited by M.Y. Jaffrin. Paris: L'Institut National de la Sante et de la Recherche Medicale, 1978, pp. 299–307.

    Google Scholar 

  27. Tözeren, A., R. Skalak, B. Fedorciw, K.L.P. Sung, and S. Chien. Constitutive equations of erythrocyte membrane incorporating evolving preferred configuration.Biophys. J. 45:541–549, 1984.

    PubMed  Google Scholar 

  28. Weinbaum, S. Theory for formulation of intercellular junctions based on intramembranous particle patterns observed in freeze-fracture technique.J. Theor. Biol. 83:63–92, 1980.

    Article  CAS  PubMed  Google Scholar 

  29. Zarda, P.R., S. Chien, and R. Skalak. Interaction of a viscous incompressible fluid with an elastic body. In:Computational Methods for Fluid-Structure Interaction Problems, edited by T. Belytschko and T.L. Geers. New York: American Society of Mechanical Engineers, 1977, AMD 26:65–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Presented at the Annual Meeting of the Biomedical Engineering Society, Chicago, Illinois, April 1983.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skalak, R. Biomechanics at the cellular level. Ann Biomed Eng 12, 305–318 (1984). https://doi.org/10.1007/BF02407775

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02407775

Keywords

Navigation