Skip to main content
Log in

Activation energies for superplastic tensile and compressive flow in microduplex α/ß copper alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Logarithmic stress against strain rate curves have been determined at various temperatures for a superplastic commercialα/β nickel-silver alloy strained in tension, and a laboratory prepared microduplex alloy of nominally similar composition strained in compression. The shapes of the curves were found to be affected by grain growth at high temperatures and strain softening at low temperatures. After taking these factors into account, it was apparent that with decreasing strain rate in both alloys a change in deformation mechanism occurred giving rise to a Region I of low strain-rate sensitivity. By confining activation energy (Q) measurements to temperatures at which steady-state deformation occurred, it was found thatQ for Region II was very similar to that measured for grain boundary diffusion in theα phase of a nickel-silver alloy of similar composition, whileQ for Region I was substantially higher than that for lattice diffusion. Values of strain-rate sensitivity andQ were found to be similar for each direction of applied stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Rai andN. J. Grant,Met. Trans. A 6A (1975) 385.

    CAS  Google Scholar 

  2. M. Suery andB. Baudelet,J. Mater. Sci. 10 (1975) 1022.

    Article  CAS  Google Scholar 

  3. D. W. Livesey andN. Ridley,Met. Trans. A. 9A (1978) 519.

    CAS  Google Scholar 

  4. K. A. Padmanabhan andG. J. Davies,Met. Sci. 11 (1977) 177.

    CAS  Google Scholar 

  5. F. A. Mohamed, S-A. Shei andT. G. Langdon,Acta Metall. 23 (1975) 1443.

    Article  CAS  Google Scholar 

  6. M. Cook andE. C. Larke,J. Inst. Metals 71 (1945) 371.

    CAS  Google Scholar 

  7. N. H. Polakowski,ibid. 163 (1949) 250.

    CAS  Google Scholar 

  8. S. Sagat, P. Blenkinsop andD. M. R. Taplin,ibid. 100 (1972) 268.

    CAS  Google Scholar 

  9. R. H. Bricknell andA. P. Bentley,J. Mater. Sci. 14 (1979) 2547.

    Article  CAS  Google Scholar 

  10. D. W. Livesey andN. Ridley,Scripta Metall. 16 (1982) 165.

    Article  CAS  Google Scholar 

  11. S. W. Zehr andW. A. Backofen,Trans. ASM 61 (1968) 300.

    CAS  Google Scholar 

  12. A. Arieli, A. K. S. Yu andA. K. Mukherjee,Met. Trans. A 11A (1980) 181.

    CAS  Google Scholar 

  13. F. A. Mohamed andT. G. Langdon,Phil. Mag. 32 (1975) 697.

    CAS  Google Scholar 

  14. K. J. Anusavice andR. T. Dehoff,Met. Trans. 3 (1972) 1279.

    Google Scholar 

  15. M. K. Asundi andD. R. R. West,J. Inst. Metals 94 (1966) 19.

    CAS  Google Scholar 

  16. K. Mukherjee, D. S. Lieberman andT. A. Read,J. Appl. Phys. 36 (1965) 857.

    Article  CAS  Google Scholar 

  17. R. D. Schelling andG. H. Reynolds,Met. Trans. 4 (1973) 1199.

    Google Scholar 

  18. B. M. Watts, M. J. Stowell andD. M. Cottingham,J. Mater. Sci. 6 (1971) 228.

    Article  CAS  Google Scholar 

  19. S. A. Shei andT. G. Langdon,Acta Metall. 26 (1978) 1153.

    Article  CAS  Google Scholar 

  20. M. L. Vaidya, K. L. Murty andJ. E. Dorn,ibid. 21 (1973) 1615.

    Article  CAS  Google Scholar 

  21. P. Maulik andK. A. Padmanabhan,J. Mater. Sci. 10 (1975) 1646.

    Article  Google Scholar 

  22. T. G. Langdon,Res. Mechanica Lett. 7 (1983) 239.

    Google Scholar 

  23. A. Arieli, T. Kainuma andA. K. Mukherjee,Acta Metall. 30 (1982) 1679.

    Article  Google Scholar 

  24. R. G. Menzies, J. W. Edington andG. J. Davies,Met. Sci. 15 (1981) 210.

    CAS  Google Scholar 

  25. J. E. Burke andD. Turnbull,Prog. Met. Phys. 3 (1952) 220.

    Article  CAS  Google Scholar 

  26. D. Turnbull,Trans. AIME 191 (1951) 661.

    Google Scholar 

  27. P. A. Beck, M. L. Holzworth andHu Hsan,Phys. Rev. 75 (1948) 526.

    Article  Google Scholar 

  28. J. H. Gittus,Trans. ASME J. Eng. Mater. Technol. 99 (1977) 244.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Livesey, D.W., Ridley, N. & Mukherjee, A.K. Activation energies for superplastic tensile and compressive flow in microduplex α/ß copper alloys. J Mater Sci 19, 3602–3611 (1984). https://doi.org/10.1007/BF02396932

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02396932

Keywords

Navigation