Skip to main content
Log in

Ion potential diagrams as guidelines for stability and performance of electrochromic devices

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The purpose of construction of ion potential diagrams is to facilitate the description of systems in which ionic species are mobile. These diagrams depict qualitatively the spatial dependence of the potential energy for mobile ions in a way similar to band diagrams for electrons. We specify and explain what types of experimental data are needed to construct these diagrams. We construct such diagrams for five layer electrochromic devices in which both optically active electrodes are oxides, capable of reversible lithium ion intercalation. We consider the systems at open circuit and under bias. We compare the behaviour of several electrochromic oxides with respect to intercalation and deintercalation reactions. On the basis of the diagrams we discuss electrode stability and switching time in electrochromic devices. Possible novel electrode materials, in terms of their electrical behaviour, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6. References

  1. J.F. Guillemoles and D. Cahen, Cryst. Res Technol.31, 147 (1996).

    Google Scholar 

  2. J.F. Guillemoles and D. Cahen, Ionics2, 143 (1996).

    Article  CAS  Google Scholar 

  3. S.K. Deb, Philos. Mag.27 801 (1983); C.G. Granqvist, “Handbook of inorganic electrochromic materials”, Elsevier, Amsterdam, 1995; Solar En. Mater. Solar Cells39, 2 (1995), special issue on electrochromics, B. Scrosati, ed.

    Google Scholar 

  4. R.B. Goldner et. al., Appl. Phys. Lett.62, 1699 (1993).

    Article  CAS  Google Scholar 

  5. A.M. Andersson et al., Appl. Opt.28, 3295 (1989).

    CAS  Google Scholar 

  6. M. Green and K. Kang, Displays, October 1988, p. 166.

  7. F.M. Michalak, J.R. Owen, Solid State Ionics86, 965 (1996) and in this issue.

    Article  Google Scholar 

  8. J.R. Akrige and M. Balkanski, “Solid State Microbatteries” (NATO ASI Series B) Plenum Press NY 1990.

  9. H. Reiss, J. Phys. Chem.89, 3783 (1985).

    CAS  Google Scholar 

  10. S. Hashimoto, H. Matsuoka, J. Electrochem. Soc.138, 2403 (1991).

    CAS  Google Scholar 

  11. S. Radhakrisnan, S. Unde, A.B. Mandale, Solid State Ionics48, 268 (1997).

    CAS  Google Scholar 

  12. S.J. Golden, B.C.H. Steele, Solid State Ionics,28–30, 1733 (1987).

    Google Scholar 

  13. R.B. Goldner et al., Solid State Ionics70/71, 613 (1994).

    Article  Google Scholar 

  14. T. Brousse and D.M. Schleich, Ionics, to be published (Proc. 4th Euroconf. Solid State Ionics); R.A. Huggins,ibidem; Y. Idota, M. Mishima, M. Miyaki, T. Kubota, T. Miyasaka, Eur. Pat. Appl. 651450 Al 950503.

  15. S.K. Mohapatra, S. Wagner, J. Electrochem. Soc.125, 1603 (1978).

    CAS  Google Scholar 

  16. M. Green, Thin Solid Films50, 145 (1978).

    Article  CAS  Google Scholar 

  17. J. Nagai, T. Kamimori, Jpn. J. Appl. Phys.22, 681 (1983).

    Article  CAS  Google Scholar 

  18. J.-G. Zhang, C.E. Tracy, D.K. Benson, S.K. Deb J. Mater. Res.8, 2649 (1993).

    CAS  Google Scholar 

  19. C. Ho, I.D. Raistrick, R.A. Huggins, J. Electrochem. Soc.127, 343 (1980).

    CAS  Google Scholar 

  20. M. Leibovitch, L. Kronik, E. Fefer, V. Korobov, and Y. Shapira, Appl. Phys. Lett.65, 457 (1995).

    Google Scholar 

  21. D.L. Kronik, L. Burstein, M. Leibovich, Y. Shapira, D. Gal, E. Moons, J. Beier, G. Hodes, D. Cahen, D. Hariskos, R. Klenk, H. W. Schock, Appl. Phys. Lett.67, 1405 (1995).

    Article  CAS  Google Scholar 

  22. D. Scherson, W. Ekardt, H. Gerischer, J. Phys. Chem.89, 554 (1985).

    Article  CAS  Google Scholar 

  23. Q. Zhong, J. R. Dahn, K. Colbow, Phys. Rev.B 46, 2554 (1992).

    Google Scholar 

  24. C. Julien, L. El-Farh, M. Balkanski, O.M. Hussain, G.A. Nazri, Appl. Surface Science65/66, 325 (1993).

    Google Scholar 

  25. A. Gorenstein, J. Scarminio, A. Lourenço, Solid State Ionics86–88, 977 (1996).

    Google Scholar 

  26. C.G. Granqvist “Handbook of inorganic electrochromic materials”, Elsevier, 1995, p. 394–395.

  27. C.G. Granqvist “Handbook of inorganic electrochromic materials”, (Elsevier 1995) page 310–312.

  28. F. Decker, R. Pileggi, S. Passerini, B. Scrosati, J. Electrochem. Soc.138, 3182 (1991).

    CAS  Google Scholar 

  29. J. Molenda, A. Stoklosa, T. Bak, Solid State Ionics36, 53 (1989).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varsano, F., Masetti, E., Guillemoles, J.F. et al. Ion potential diagrams as guidelines for stability and performance of electrochromic devices. Ionics 3, 420–426 (1997). https://doi.org/10.1007/BF02375719

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375719

Keywords

Navigation