Skip to main content
Log in

Electrochemical promotion of environmentally important catalytic reactions

  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The performance of conventional heterogeneous metal catalysts may be enhanced by the addition of so-called promoter species that are used to modify the intrinsic metal surface chemistry with respect to activity and/or selectivity. Electrochemical methods provide an alternative, radically different and uniquely efficacious method of catalyst promotion. Substantial and reversible changes in catalyst perfomance can be induced by back-spillover ions pumped from a solid electrolyte to the surface of a catalytically active electrode: one hasin situ control of the working catalyst.

Studies of the electrochemical promotion of NO reduction over Pt films supported on β″-alumina (a sodium ion conductor) demonstrate that major enhancements in activity are possible when Na is pumped to the catalyst surface. We have examined the NO+CO reaction and the reaction of NO with propene. Both reactions are relevant to control of automotive and other emissions, and both exhibit strong electrochemical promotion. By simulating lean-burn engine conditions, we have also demonstrated that EP of a Pt catalyst very substantially enhances the ability of NO to oxidise propene in an oxygen-rich atmosphere. Reaction kinetic data obtained as a function of catalyst potential, temperature and gas composition indicate that Na increases the strength of NO chemisorption relative to CO or propene, a process that is accompanied by weakening of the N-O bond, thus facilitating NO dissociation, which is the critical reaction-initiating step. XP spectroscopy under the appropriate conditions of temperature and catalyst potential confirms that the mode of operation of the elctrochemically promoted Pt film does indeed involve reversible pumping of Na to or from the solid electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

7. References

  1. C.G. Vayenas, S. Bebelis, I.V. Yentekakis, and H.G. Lintz, in “Catalysis Today”, Vol. 11, No 3, p. 303. Elsevier, Amsterdam, 1992.

    Google Scholar 

  2. S.G. Neophytides, D. Tsiplakides, P. Stonehart, M.M. Jaksic and C.G. Vayenas, Nature370, 45 (1994).

    Article  CAS  Google Scholar 

  3. J. A. Rodriguez and D. W. Goodman, Surf. Sci. Reports14, 1 (1991).

    CAS  Google Scholar 

  4. Y. O. Park, W. F. Banholzer and R. I. Masel, Surf. Sci.155, 341 (1985).

    Article  CAS  Google Scholar 

  5. W. F. Banholzer, R. E. Parise and R. I. Masel, Surf. Sci.155, 653 (1985).

    Article  CAS  Google Scholar 

  6. D'Arcy Lorimer and A. T. Bell, J. Catal.59, 223 (1979).

    Article  CAS  Google Scholar 

  7. B. A. Banse, D. T. Wickham and B. E. Koel, J. Catal.119, 238 (1989).

    Article  CAS  Google Scholar 

  8. R. L. Klein, S. Schwartz and L. D. Schimdt, J. Phys. Chem.89, 4908 (1985).

    Article  CAS  Google Scholar 

  9. D. N. Belton and S. J. Scmieg J. Catal138, 70 (1992).

    Article  CAS  Google Scholar 

  10. D. N. Belton and S. J. Scmieg J. Catal.144, 9 (1993).

    CAS  Google Scholar 

  11. S. E. Oh., G. B. Fischer, J. E. Carpenter and D. W. Goodman J. Catal.100, 360 (1986).

    Article  CAS  Google Scholar 

  12. A. Obuchi, A. Ohi, M. Nakamura, A. Ogata, K. Mizuno and H. Ohuchi, Appl.Catal.B, Environmental,2, 71 (1993).

    Article  CAS  Google Scholar 

  13. J.R. Hardee and J.W. Hightower, J.Catal.86, 137 (1984).

    Article  CAS  Google Scholar 

  14. S. Naito and M. Tanimoto, Chem. Lett.1935 (1993).

  15. R. Burch, P.J. Millington, A.P. Walker Appl. Catal. B: Environmental.4, 65. (1994)

    Article  CAS  Google Scholar 

  16. T. Miyadera and K. Yoshida, Chem. Lett. (1993) p.1483.

  17. H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, M. Tabata, Appl. Catal.75, L1 (1991).

  18. C.G. Vayenas, S. Bebelis, S. Neophytides and I.V. Yentekakis, Appl. Phys.A49, 95 (1989).

    CAS  Google Scholar 

  19. I.V. Yentekakis, S. Neophytides and C.G. Vayenas, J. Catal.111, 152 (1988).

    CAS  Google Scholar 

  20. I.V. Yentekakis and S. Bebelis, J. Catal.137, 278 (1992)

    Article  CAS  Google Scholar 

  21. C.G. Vayenas, S. Bebelis and M. Despotopoulou, J. Catal. 128, 415 (1991).

    Article  CAS  Google Scholar 

  22. I.V. Yentekakis, G.D. Moggridge, G.D. Moggridge, C.G. Vayenas and R.M. Lambert, J. Catal.146 (1994) 292.

    Article  CAS  Google Scholar 

  23. N.D. Lang, S. Holloway and J.K. Norskov, Surface Science150, 24 (1985).

    Article  CAS  Google Scholar 

  24. I. R. Harkness and R.M. Lambert,in preparation.

  25. G. Pirug and H.P. Bonzel, J. Catal.50, 64 (1977).

    Article  CAS  Google Scholar 

  26. I. R. Harkness and R.M. Lambert, J. Catal.152, 211 (1995).

    Article  CAS  Google Scholar 

  27. N.R. Avery, N.S. Sheppard, Proc. Roy. Soc. Lond.A405, 1 (1986).

    Google Scholar 

  28. R.J. Koestner, J.C. Frost, P.C. Stair, M.A. VanHove, G.A. Somorjai, Surf. Sci.116, 85 (1982).

    Article  CAS  Google Scholar 

  29. M. Salmeron, G.A. Somorjai, J. Phys. Chem.86, 341 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, R.M., Tikhov, M., Palermo, A. et al. Electrochemical promotion of environmentally important catalytic reactions. Ionics 1, 366–376 (1995). https://doi.org/10.1007/BF02375278

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02375278

Keywords

Navigation