Skip to main content
Log in

Age changes in geometry and mineral content of the lower limb bones

  • Musculoskeletal Mechanics: Papers Presented at a Biomedical Engineering Society Symposium, April 12, 1983, Chicago, Illinois
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Subperiosteal expansion and increase in second moments of area with aging of eleven femoral and tibial cross-sections are documented in a large archaeological sample from the American Southwest. In contrast to these geometric changes, we found little change with age in bone mineral density measured using photon absorptiometry. Thus, the most significant structural changes with age in bone appear to involve its geometry and material characteristics other than its density. Variation in age-related geometric remodeling between cross-section locations and populations may be caused by differences in mechanical stress and strain levels in vivo in the lower limb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alffram, P.A. An epidemiological study of cervical and trochanteric fractures of the femur in an urban population.Acta Orthop. Scand. Suppl. 65:1964.

  2. Alffram, P.A. and G.C.H. Bauer. Epidemiology of fractures of the forearm. A biomechanical investigation of bone strength.J. Bone Jt. Surg. (Am.) 44:105–114, 1962.

    Google Scholar 

  3. Aloia, J.F., K. Ellis, I. Zanzi, and S.H. Cohn. Photon absorptiometry and skeletal mass in the treatment of osteoporosis.J. Nucl. Med. 16:196–199, 1975.

    CAS  PubMed  Google Scholar 

  4. Amtmann, V.E. Mechanical stress, functional adaptation and the variation structure of the human femur diaphysis.Adv. Anat. Embryol. Cell Biol. 44. Berlin: Springer-Verlag, 1971.

    Google Scholar 

  5. Atkinson, P.J., D.A. Hancock, V.N. Acharya, F.M. Parsons, E.A. Proctor, and G.W. Reed. Changes in skeletal mineral in patients on prolonged maintenance dialysis.Br. Med. J. 4:519–522, 1973.

    CAS  PubMed  Google Scholar 

  6. Bohler, L.The Treatment of Fractures. New York: Grune and Stratton, 1958.

    Google Scholar 

  7. Boyd, R.M., E.C. Cameron, H.W. McIntosh, and V.R. Walker. Measurement of bone mineral content in vivo using photon absorptiometry.Can. Med. Assoc. J. 111:1201–1205, 1974.

    CAS  PubMed  Google Scholar 

  8. Buhr, A.J. and A.M. Cooke. Fracture patterns.Lancet 1:531–534, 1959.

    CAS  PubMed  Google Scholar 

  9. Burstein, A.H., D.T. Reilly, and M. Martens. Aging of bone tissue: Mechanical properties.J. Bone Jt. Surg. (Am.) 58:82–86, 1976.

    CAS  Google Scholar 

  10. Cameron, J.R., R.B. Mazess, and J.A. Sorenson. Precision and accuracy of bone mineral determination by direct photon absorptiometry.Invest. Radiol. 3:141–150, 1968.

    CAS  PubMed  Google Scholar 

  11. Cameron, J.R. and J. Sorenson. Measurement of bone mineral in vivo: An improved method.Science 142:230–232, 1963.

    CAS  PubMed  Google Scholar 

  12. Carter, D.R. Anisotropic analysis of strain rosette information from cortical bone.J. Biomech. 11:199–202, 1978.

    CAS  PubMed  Google Scholar 

  13. Chalmers, J. Distribution of osteoporotic changes in the ageing skeleton.Clin. Endocrinol. Metab. 2:203–220, 1973.

    Article  CAS  PubMed  Google Scholar 

  14. Chalmers, J. and K.C. Ho. Geographical variations in senile osteoporosis.J. Bone Jt. Surg. (Br.) 52:667–675, 1970.

    CAS  Google Scholar 

  15. Cohn, S.H., K.J. Ellis, S. Wallach, I. Zanzi, H.L. Atkins, and J.F. Aloia. Absolute and relative deficit in total-skeletal calcium and radial bone mineral in osteoporosis.J. Nucl. Med. 15:428–435, 1974.

    CAS  PubMed  Google Scholar 

  16. Cowin, S.C. Mechanical properties of bone. ASME AMD — Vol. 45, Proceedings of the Joint ASME-ASCE Applied Mechanics, Fluids Engineering and Bioengineering Conference, Boulder, Colorado. June 22–24, 1981.

  17. Currey, J.D. Changes in the impact energy absorption of bone with age.J. Biomech. 12:459–469, 1979.

    CAS  PubMed  Google Scholar 

  18. Dequeker, J. Bone and aging.Ann Rheum. Dis. 34:100–115, 1975.

    CAS  PubMed  Google Scholar 

  19. Doyle, F: Involutional osteoporosis.Clin. Endocrin. Metab. 1:143–167, 1972.

    Google Scholar 

  20. Edwards, P. Fracture of the shaft of the tibia: 492 consecutive cases in adults.Acta Orthop. Scand. 44,Suppl. 76, 1965.

    Google Scholar 

  21. Frankel, V.H. and M. Nordin.Basic Biomechanics of the Skeletal System. Philadelphia: Lea and Febiger, 1980.

    Google Scholar 

  22. Fredensborg, N. and B.E. Nilsson. The bone mineral content and cortical thickness in young women with femoral neck fracture.J. Bone Jt. Surg. 44-B: 520–527, 1977.

    Google Scholar 

  23. Garn, S.M.The Earlier Gain and Later Loss of Cortical Bone. Springfield, Illinois: Charles C. Thomas, 1970.

    Google Scholar 

  24. Hooton, E.A. The Indians of Pecos Pueblo. A study of their skeletal remains. Pap. Phil. Acad. SW Exped., 4: Yale University Press, New Haven, 1930.

    Google Scholar 

  25. Horsman, A., L. Bulusu, H.B. Bentley, and B.E.C. Nordin. Internal relationships between skeletal parameters in twenty-three male skeletons. AEC Proc. Bone Measurement Conf., 365–382, 1970.

  26. Johnson, C.C., Jr., J.A. Norton, Jr., R.A. Khairi, and C. Longcope. Age-related bone loss. InOsteoporosis II, edited by V.S. Bazel, New York: Grune and Stratton, 1978, pp. 91–100.

    Google Scholar 

  27. Johnston, C.C., Jr., D.M. Smith, P-L. Yu, and W. P. Deiss, Jr. In vivo measurement of bone mass in the radius.Metabolism 17:1140–1153, 1968.

    Article  PubMed  Google Scholar 

  28. Katz, J.L. Composite material models for cortical bone.ASME-AMD 45:193–210, 1981.

    Google Scholar 

  29. Khairi, M.R.A., J.H. Cronin, J.A. Robb, D.M. Smith, P-L. Yu, and C.C. Johnston, Jr. Femoral trabecular-pattern index and bone mineral content measurement by photon absorption in senile osteoporosis.J. Bone Jt. Surg. 58-A:221–225, 1976.

    Google Scholar 

  30. Kimura, T. Mechanical characteristics of human lower leg bones.J. Fac. Sci. Univ. Tokyo, Sect. 5, 4:319–393, 1974.

    Google Scholar 

  31. Kootstra, G. Femoral shaft fractures in adults (Medical Series No. 227), edited by Van Gorcum and G.V. Comp. Assen, The Netherlands, 1973, pp. 1–37.

  32. Lanyon, L.E., P.T. Magee, and D.G. Baggott. The relationship of functional stress and strain to the processes of bone remodelling. An experimental study on the sheep radius.J. Biomech. 12:593–600, 1979.

    Article  CAS  PubMed  Google Scholar 

  33. Lewinnek, G.E., J. Kelsey, A.A. White, III, and N.J. Kreiger. The significance and a comparative analysis of the epidemiology of hip fractures.Clin. Orthop. 152:35–43, 1980.

    PubMed  Google Scholar 

  34. Lindahl, O. and A.G.H. Lindgren. Cortical bone in man. I. Variations of the amount and density with age and sex. II. Variation in tensile strength with age and sex.Acta Orthop. Scand. 38:133–147, 1967.

    CAS  PubMed  Google Scholar 

  35. Lovejoy, C.O., A.H. Burstein, and K.G. Heiple. The biomechanical analysis of bone strength: A method and its application to playcnemia.Am. J. Phys. Anthropol. 44:489–506, 1976.

    Article  CAS  PubMed  Google Scholar 

  36. Martin, R.B. and P.J. Atkinson. Age and sex-related changes in the structure and strength of the human femoral shaft.J. Biomech. 10:223–231, 1977.

    Article  CAS  PubMed  Google Scholar 

  37. Martin, R.B., J.C. Pickett, and S. Zinaich. Studies of skeletal remodeling in aging men.Clin. Orthop. 149:268–282, 1980.

    PubMed  Google Scholar 

  38. Mazess, R.B. On aging bone loss.Clin. Orthop. 165:239–252, 1982.

    PubMed  Google Scholar 

  39. Mazess, R.B., J.R. Cameron, R. O'Connor, and D. Knutzen. Accuracy of bone mineral measurement.Science, 145:388–389, 1964.

    CAS  PubMed  Google Scholar 

  40. Miller, C.W. Survival and ambulation folllwing hip fracture.J. Bone Jt. Sug. (Am.) 52:930, 1978.

    Google Scholar 

  41. Miller, G.J. and G. Piotrowski. Geometric properties of paired human femurs. InAdvances in Bioengineering, edited by E.S. Grood, and C.R. Smith, New York: ASTM, 1977, pp. 73–74.

    Google Scholar 

  42. Miller, G.J. and W.W. Purkey. The geometric properties of paired human tibiae.J. Biomech. 13:1–8, 1980.

    CAS  PubMed  Google Scholar 

  43. Minns, R.J., G.R. Bremble, and J. Campbell. The geometrical properties of the human tibia.J. Biomech. 8:253–255, 1975.

    Article  CAS  PubMed  Google Scholar 

  44. Moritz, J.R., G.B. Saviers, A.S. Earle, and J.D. Ball. Spiral fractures of the tibia: Long term results of Parham Band fixation.J. Trauma. 2:147–161, 1962.

    CAS  PubMed  Google Scholar 

  45. Newton-John, M.B. and D.B. Morgan. The loss of bone with age, osteoporosis, and fractures.Clin. Orthop. 71:229–252, 1970.

    CAS  PubMed  Google Scholar 

  46. Nilsson, B.E. and N.E. Westlin. Bone mineral content and fragility fractures.Clin. Orthop. 124:161–164, 1977.

    PubMed  Google Scholar 

  47. Nilsson, B.E.R. Post-traumatic osteopenia: Quantitative study of bone mineral in the femur following fracture of the tibia in man using241Am as a photon source.Acta Orthop. Scand. 37, Suppl. 91, 1966.

    Google Scholar 

  48. Overton, T.R., D.S. Silverberg, D.S. Rigal, and L. Friedenberg. University of Alberta bone mineral analysis system: Performance and clinical application. InInternational Conference Bone Mineral Measurement, edited by R.B. Mazess, Washington, D.C.: NIH Publication No. 75-683, 1974, pp. 11–29.

  49. Owen, R.A., L.J. Melton, III, J.C. Gallagher, and B.L. Riggs. The national cost of acute care of hip fractures associated with osteoporosis.Clin. Orthop. 150:172–176, 1980.

    PubMed  Google Scholar 

  50. Piziali, R.L., T.K. Hight, and D.A. Nagel. An extended structural analysis of long bones: Application to the human tibia.J. Biomech. 9:695–701, 1976.

    Article  CAS  PubMed  Google Scholar 

  51. Piziali, R.L., T.K. Hight, and D.A. Nagel. Geometric properties of human leg bones.J. Biomech. 13:881–885, 1980.

    CAS  PubMed  Google Scholar 

  52. Riggs, B.L., H.W. Wahner, W.L. Dunn, R.B. Mazess, K.P. Offord, and L.J. Melton, III. Differential changes in bone mineral density of the appendicular and axial skeleton with aging.J. Clin. Invest. 67:328–335, 1981.

    CAS  PubMed  Google Scholar 

  53. Ruff, C.B. and W.C. Hayes. Subperiosteal expansion and cortical remodeling of the human femur and tibia with aging.Science 217:945–948, 1982.

    CAS  PubMed  Google Scholar 

  54. Ruff, C.B. and W.C. Hayes. Cross-sectional geometry of Pecos Pueblo femora and tibiae — a biomechanical investigation. I. Method and general patterns of variation.Am. J. Phys. Anthropol. 63:359–381, 1983.

    Google Scholar 

  55. Ruff, C.B. and W.C. Hayes. Cross-sectional geometry of Pecos Pueblo femora and tibiae — a biomechanical investigation. II. Sex, age, and side differences.Am. J. Phys. Anthropol. 63:383–400, 1983.

    Google Scholar 

  56. Ruff, C.B. and W.C. Hayes. Bone mineral content: Relationship to cross-sectional geometry.J. Bone Jt. Surg. (Am.) 66:1024–1031, 1984.

    CAS  Google Scholar 

  57. Sabatier, J.-P., J.-F. Heron, J.-F. Petiot, N. Sabatier, and J.-J. Dronne. Clinical usefulness of a bone mineral measurement method on the femoral shaft.Falcif. Tissue Int. 34:21–28, 1982.

    CAS  Google Scholar 

  58. Saville, P.D., R.P. Heaney, and R.R. Recker. Radiogrammetry at four bone sites in normal middle-aged women.Clin. Orthop. 114:307–315, 1976.

    PubMed  Google Scholar 

  59. Smith, R.W. and R.R. Walker. Femoral expansion in aging women: Implications for osteoporosis and fractures.Science 145:156–157, 1964.

    PubMed  Google Scholar 

  60. Stewart, I.M. Fractures of neck of femur: Incidence and implications.Br. Med. J. 1:698–701, 1955.

    Google Scholar 

  61. Wall, J.C., S.K. Chatterji, and J.W. Jeffrey. Age-related changes in the density and tensile strength of human femoral cortical bone.Calcif. Tissue Int., 27:105–108, 1979.

    CAS  PubMed  Google Scholar 

  62. West, R.R.. The estimation of total skeletal mass from bone densitometry measurements using 60 keV photons.Br. J. Radiol. 46:599–603, 1973.

    CAS  PubMed  Google Scholar 

  63. West, R.R. and G.W. Reed. The measurement of bone mineral in vivo by photon beam scanning.J. Radiol. 43:886–893, 1970.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruff, C.B., Hayes, W.C. Age changes in geometry and mineral content of the lower limb bones. Ann Biomed Eng 12, 573–584 (1984). https://doi.org/10.1007/BF02371450

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02371450

Keywords

Navigation