Skip to main content
Log in

Modeling the concentration of ethanol in the exhaled breath following pretest breathing maneuvers

  • Research Articles
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A previously developed mathematical model that describes the relationship between blood alcohol (ethanol) concentration and the concentration of alcohol in the exhaled breath at end-exhalation (BrAC) has been used to quantitate the effect of pretest breathing conditios on BrAC. The model was first used to “condition” the airways with different breathing maneuvers prior to simulating a single exhalation maneuver, the maneuver used in standard breath alcohol testing. On inspiration, the alcohol in the air reaches local equilibrium with the alcohol in the bronchial capillary bed prior to entering the alveolar region. On expiration, approximately 50% of the alcohol absorbed on inspiration is desorbed back to the airways. BrAC correlates with the amount of alcohol that is desorbed to the airways. The six pretest breathing conditions and the percent change in BrAC relative to the control maneuver were: hyperventilation (−4.4%), hypoventilation (3.7%), hot-humid air (−2.9%), hot-dry air (0.66%), cold-humid air (0.13%), and cold-dry air (0.53%). The mechanism underlying these responses is not due to changes in breath temperature, but, rather to changes in the axial profile of alcohol content in the mucous lining of the airways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonson, E. F., H. Menkes, G. Gurtner, D. L. Swift and D. F. Proctor. Effect of respiratory airflow rate on the removal of soluble vapors by the nose.J. Appl. Physiol. 37:654–657, 1974.

    CAS  PubMed  Google Scholar 

  2. Bird, R. B., W. E. Stewart, and E. N. Lightfoot. Transport Phenomena, New York: John Wiley & Sons, 1960, p. 354.

    Google Scholar 

  3. Chilton, T. H., and A. P. Colburn. Mass transfer (absorption) coefficients: Prediction from data on heat transfer and fluid friction.Ind. Eng. Chem. 26:1183–1187, 1934.

    Article  CAS  Google Scholar 

  4. Dahl, A. R., M. B. Snipes, and P. Gerde. Sites for uptake of inhaled vapors in beagle dogs.Toxicol. Appl. Pharm. 109:263–275, 1991.

    Article  CAS  Google Scholar 

  5. Dubowski, K. M. Breath-alcohol simulators: Scientific basis and actual performance.J. Anal. Toxicol. 3:177–182, 1979.

    CAS  Google Scholar 

  6. George, S. C., A. L. Babb, and M. P. Hlastala. Dynamics of soluble gas exchange in the airways: III. Single exhalation breathing maneuver.J. Appl. Physiol. 75:2439–2449, 1993.

    CAS  PubMed  Google Scholar 

  7. Hanna, L. M., and P. W. Scherer. Measurement of local mass transport coefficients in a cast model of the human upper respiratory tract.J. Biomech. Eng. 108:12–18, 1986.

    CAS  PubMed  Google Scholar 

  8. Hildebrandt, J. Structural and mechanical aspects of respiration. In: Textbook of Physiology, edited by H. D. Patton, A. F. Fuchs, B. Hille, A. M. Scher and R. Steiner. Philadelphia: W.B. Saunders Co., 1989, Vol. 2, p. 995.

    Google Scholar 

  9. Hindmarsh, A. LSODE (computer program). Lawrence Livermore Laboratory, 1981.

  10. Ingenito, E. P., J. Solway, E. R. McFadden, and J. M. Drazen. A quantitative study of heat transfer coefficients in the upper tracheobronchial tree of man (Abstract).Fed. Proc. 45:1020, 1986.

    Google Scholar 

  11. Iravani, J., and A. v., As. Mucus transport in the tracheobronchial tree of normal and bronchitic rats.Pathologe 106:81–93, 1972.

    CAS  Google Scholar 

  12. Jones, A. W. Effects of temperature and humidity of inhaled air on the concentration of ethanol in a man's exhaled breath.Clin. Sci. 63:441–445, 1982.

    CAS  PubMed  Google Scholar 

  13. Jones, A. W. How breathing technique can influence the results of breath-alcohol analysis.Med. Sci. Law. 22:275–280, 1982.

    CAS  PubMed  Google Scholar 

  14. Jones, A. W. Quantitative measurements of the alcohol concentration and the temperature of breath during a prolonged exhalation.ACTA Physiol. Scand. 114:407–412, 1982.

    CAS  PubMed  Google Scholar 

  15. Jones, A. W. Determination of liquid/air partition coefficients for dilute solutions of ethanol in water, whole blood, and plasma.J. Anal. Toxicol. 7:193–197, 1983.

    CAS  PubMed  Google Scholar 

  16. Luchtel, D. L. The mucous layer of the trachea and major bronchi in the rat.Scan. Elect. Micro. 2:1089–1098, 1978.

    Google Scholar 

  17. McFadden, E. R., B. M. Pichurko, H. F. Bowman, E. Ingenito, S. Burns, N. Dowling, and J. Solway. Thermal mapping of the airways in humans.J. Appl. Physiol. 58:564–570, 1985.

    PubMed  Google Scholar 

  18. Morris, J. B., and D. G. Cavanagh. Deposition of ethanol and acetone vapors in the upper respiratory tract of the rat.Fund. Appl. Toxicol. 6:78–88, 1986.

    Article  CAS  Google Scholar 

  19. Newman, W. H., and P. P. Lele. A transient heating technique for the measurement of thermal properties of perfused biological tissue.J. Biomech. Eng. 107:219–227, 1985.

    CAS  PubMed  Google Scholar 

  20. Ohlsson, J., D. D. Ralph, M. A. Mandelkorn, A. L. Babb, and M. P. Hlastala. Accurate measurement of blood alcohol concentration with isothermal rebreathing.J. Stud. Alcohol. 51:6–13, 1990.

    CAS  PubMed  Google Scholar 

  21. Schrikker, A. C. M., W. R. de Vries, A. Zwart, and S. C. M. Luijendijk. Uptake of highly soluble gases in the epithelium of the conducting airways.Pflugers Arch. 405:389–394, 1985.

    Article  CAS  PubMed  Google Scholar 

  22. Solway, J., B. H. Pichurko, E. P. Ingenito, E. R. McFadden, Jr., C. H. Fanta, R. H. Ingram, Jr., and J. M. Drazen. Breathing pattern affects airway wall temperature during cold air hyperpnea in humans.Am. Rev. Resp. Dis. 132:853–857, 1985.

    CAS  PubMed  Google Scholar 

  23. Tsu, M. E., A. L. Babb, E. M. Sugiyama, and M. P. Hlastala. Dynamics of soluble gas exchange in the airways: II. Effects of breathing conditions.Resp. Physiol. 83:261–276, 1991.

    CAS  Google Scholar 

  24. Tsu, M. E., A. L. Babb, D. D. Ralph, and M. P. Hlastala. Dynamics of heat, water, and soluble gas exchange in the human airways: I. A model study.Ann. Biomed. Eng. 16:547–571, 1988.

    Article  CAS  PubMed  Google Scholar 

  25. Weibel, E. Morphometry of the Human Lung. New York: Springler-Verlag, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, S.C., Babb, A.L. & Hlastala, M.P. Modeling the concentration of ethanol in the exhaled breath following pretest breathing maneuvers. Ann Biomed Eng 23, 48–60 (1995). https://doi.org/10.1007/BF02368300

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368300

Keywords

Navigation