Skip to main content
Log in

An intrafascicular electrode for recording of action potentials in peripheral nerves

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We are developing a new type of bipolar recording electrode intended for implantation within individual fascicles of mammalian peripheral nerves. In the experiments reported here we used electrodes fabricated from 25 μm diameter Pt wire, 50 μm 90% Pt-10% Ir wire and 7 μm carbon fibers. The electrodes were implanted in the sciatic nerves of rats and in the ulnar nerves of cats. The signal-to-noise ratio of recorded activity induced by nonnoxious mechanical stimulation of the skin and joints was studied as a function of the type of electrode material used, the amount of insulation removed from the recording zone, and the longitudinal separation of the recording zones of bipolar electrode pairs. Both acute and short term (two day) chronic experiments were performed.

The results indicate that a bipolar electrode made from Teflon-insulated, 25 μm diameter, 90% Pt-10% Ir wire, having a 1–2 mm long recording zone, can be used for recording of peripheral nerve activity when implanted with one wire inside the fascicle and the other lead level with the first lead, but outside the fascicle. No insulating cuff needs to be placed around the nerve trunk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clark, J.; Plonsey, R. The extracellular potential field of the single active nerve fiber in a volume conductor. Biophys. J. 8:842–864; 1968.

    CAS  PubMed  Google Scholar 

  2. Clark, J.; Plonsey, R. A mathematical evaluation of the core conductor model. Biophys. J. 6:95–112; 1966.

    CAS  PubMed  Google Scholar 

  3. de Boer, R.W.; van Oosterom, A. Electrical properties of platinum electrodes: impedance measurements and time-domain analysis. Med. & Biol. Eng. & Comput. 16:1–10; 1978.

    Google Scholar 

  4. Fitzhugh, R.. Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys. J. 2:11–21; 1962.

    CAS  PubMed  Google Scholar 

  5. Hambrecht, F.T. Neural prostheses. Ann. Rev. Biophys. Bioeng. 8:239–267; 1979.

    CAS  Google Scholar 

  6. Hambrecht, F.T. Clinical application of neural prosthetic techniques. Appl. Neurophysiol. 45:10–17; 1982.

    CAS  PubMed  Google Scholar 

  7. Holle, J.; Frey, M.; Gruber, H.; Stoehr, H.; Toma, H. Functional electrical stimulation of paraplegics. Experimental investigations and first clinical experience with an implantable stimulation device. Orthopedics 7:1146–1155; 1984.

    Google Scholar 

  8. Janssens, J.; VanTrappen, G.; Hellemans, J. A new technique for recording of single unit activity in small peripheral nerves. Brain Res. 166:397–430; 1979.

    Article  CAS  PubMed  Google Scholar 

  9. Kao, C.C.; Wrathall, J.R.; Kyoshima, K. Rationales and goals of spinal cord reconstruction. In: Spinal Cord Reconstruction, Kao, C.C.; Bunge, R.P.; Reier, P. J., eds. New York: Raven Press; 1983; pp. 1–6.

    Google Scholar 

  10. Kralj, A.; Bajd, T.; Turk, R.; Krajnik, J.; Benko, H. Gait restoration in paraplegic patients: a feasibility demonstration using multichannel surface electrode FES. J. Rehab. Res. Dev. 20:3–20; 1983.

    CAS  Google Scholar 

  11. Loeb, G.E.; Bak, M.J.; Salkman, M.; Schmidt, E.M. Parylene as a chronically stable, reproducible microelectrode insulator. IEEE Trans. Biomed. Eng. 24:121–128; 1977.

    CAS  PubMed  Google Scholar 

  12. Lubinska, L. Patterns of Wallerian degeneration of myelinated fibres in short and long peripheral stumps and in isolated segments of rat phrenic nerve. Interpretation of the role of axoplasmic flow of the trophic factor. Brain Res. 233:227–240; 1982.

    Article  CAS  PubMed  Google Scholar 

  13. Marks, W.B.; Loeb, G.E. Action currents, internodal potentials, and extracellular records of myelinated mammalian nerve fibers derived from node potentials. Biophys. J. 16:655–668; 1976.

    CAS  PubMed  Google Scholar 

  14. Marsolais, E.B. Stages in the development of useful FNS-augmented walking. RESNA Proc. 9th Annl. Conf. Rehab. Techn. 9:279–281; 1986.

    Google Scholar 

  15. Pattle, R.E. The external action potential of a nerve or muscle fiber in an extended medium. Physics Med. Biol. 16:673–685; 1971.

    Google Scholar 

  16. Peckham, P.H.; Mortimer, J.T.; Marsolais, E.B. Controlled prehension and release in the C5 quadriplegic elicited by functional electrical stimulation of the paralyzed forearm musculature. Ann. Biomed. Eng. 8:369–388; 1980.

    CAS  PubMed  Google Scholar 

  17. Stein, R.B.; Charles, D.; Davis, L.; Jhamandas, J.; Mannard, A.; Nichols, T.R. Principles underlying new methods for chronic neural recording. Canad. J. Neurol. Sci. 2:235–244; 1975.

    CAS  PubMed  Google Scholar 

  18. Stoehr, H.M.; Bochdansky, T.; Frey, M.; Holle, J.; Kern, H.; Schwanda, G.; Thoma, H. Functional electrostimulation makes paraplegic patients walk again. In: 1st Vienna International Workshop on Functional Electrostimulation. Vienna, Austria: Bioengineering Lab. Van Swieten-Gasse, Austria, 1983; p. 5.4.

    Google Scholar 

  19. Sunderland, S. Nerves and nerve injuries. Baltimore: Williams and Wilkins; 1968.

    Google Scholar 

  20. Tasaki, I. A new measurement of action currents developed by single nodes of Ranvier. J. Neurophysiol. 27:1199–1206; 1964.

    CAS  PubMed  Google Scholar 

  21. Weinman, J.; Mahler, J. An analysis of electrical properties of metal electrodes. Med. Electron. & Biol. Eng. 2:299–310; 1964.

    CAS  Google Scholar 

  22. Yonezawa, Y.; Ninomiya, I.; Nishiura, N. A printed implantable electrode for recording neural signals in awake animals. IEEE/Ninth Ann. Conf. Eng. Med. Biol. Soc. Ch2513:485–487; 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malagodi, M.S., Horch, K.W. & Schoenberg, A.A. An intrafascicular electrode for recording of action potentials in peripheral nerves. Ann Biomed Eng 17, 397–410 (1989). https://doi.org/10.1007/BF02368058

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368058

Keywords

Navigation