Skip to main content
Log in

Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: A genetic analysis

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

Mice of the 129/J (129) and C57BL/6ByJ (B6) strains and their reciprocal F1 and F2 hybrids were offered solutions of ethanol, sucrose, citric acid, quinine hydrochloride, and NaCl in two-bottle choice tests. Consistent with earlier work, the B6 mice drank more ethanol, sucrose, citric acid, and quinine hydrochloride solution and less NaCl solution than did 129 mice. Analyses of each generation's means and distributions showed that intakes of ethanol, quinine, sucrose, and NaCl were influenced by a few genes. The mode of inheritance was additive in the case of ethanol and quinine, for sucrose the genotype of the 129 strain was recessive, and for NaCl it was dominant. Citric acid intake appeared to be influenced by many genes with small effects, with the 129 genotype dominant. Correlations of sucrose consumption with ethanol and citric acid consumption were found among mice of the F2 generation, and the genetically determined component of these correlations was stronger than the component related to environmental factors. The genetically determined correlation between sucrose and ethanol intakes is consistent with the hypothesis that the higher ethanol intake by B6 mice depends, in part, on higher hedonic attractiveness of its sweet taste component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azen, E. A. (1988). Linkage studies of genes for salivary proline-rich proteins and bitter taste in mouse and human. In Wysocki, C. J., and Kare, M. R. (eds.),Chemical Senses, Vol. 3: Genetics of Perception and Communication, Marcel Dekker, New York, pp. 279–290.

    Google Scholar 

  • Bachmanov, A. A., and Dmitriev, Yu. S. (1992a). Genetic analysis of some behavioral and physiological traits in hybrids between hypertensive and normotensive rats: Analysis of the inheritance nature.Genetika 28:150–159 (in Russian).

    PubMed  CAS  Google Scholar 

  • Bachmanov, A. A., and Dmitriev, Yu. S. (1992b). Genetic analysis of some behavioral and physiological traits in hybrids between hypertensive and normotensive rats: Analysis of reciprocal differences.Genetika 28:120–127 (in Russian).

    PubMed  CAS  Google Scholar 

  • Bachmanov, A. A., Tordoff, M. G., and Beauchamp, G. K. (1994). Strain differences in salt appetite in mice.Abstracts of the 2nd Independent Meeting of the SSIB (Hamilton, Canada), A-24.

  • Bachmanov, A. A., Tordoff, M. G., and Beauchamp, G. K. (1996). Ethanol consumption and taste preferences in C57BL/6ByJ and 129/J mice.Alcohol Clin. Exp. Res. 20:201–206.

    PubMed  CAS  Google Scholar 

  • Ball, D. M., and Murray, R. M. (1994). Genetics of alcohol misuse.Br. Med. Bull. 50:18–35.

    PubMed  CAS  Google Scholar 

  • Beauchamp, G. K., and Fisher, A. S. (1993). Strain differences in consumption of saline solutions by mice.Physiol. Behav. 54:179–184.

    Article  PubMed  CAS  Google Scholar 

  • Belknap, J. K., Crabbe, J. C., Plomin, R., McClearn, G. E., Sampson, K. E., O'Toole, L. A., and Gora-Maslak, G. (1992). Single-locus control of saccharin intake in BXD/Ty recombinant inbred (RI) mice: Some methodological implications for RI-strain analysis.Behav. Genet. 22:81–100.

    PubMed  CAS  Google Scholar 

  • Belknap, J. K., Crabbe, J. C., and Young, E. R. (1993). Voluntary consumption of ethanol in 15 inbred mouse strains,Psychopharmacology 112:503–510.

    PubMed  CAS  Google Scholar 

  • Boughter, J. D., Harder, D. B., Capeless, C. G., and Whitney, G. (1992). Polygenic determination of quinine aversion among mice.Chem. Senses 17:427–434.

    CAS  Google Scholar 

  • Brewster, D. J. (1968). Genetic analysis of ethanol preference in rats selected for emotional reactivity.J. Hered. 59:283–286.

    PubMed  CAS  Google Scholar 

  • Capeless, C. G., and Whitney, G. (1995). The genetic basis of preference for sweet substances among inbred strains of mice: Preference ratio phenotypes and the alleles of theSac anddpa loci.Chem. Senses 20:291–298.

    PubMed  CAS  Google Scholar 

  • Capeless, C. G., Whitney, G., and Azen, E. A. (1992). Chromosome mapping ofSoa, a gene influencing gustatory sensitivity to sucrose octaacetate in mice.Behav. Genet. 22:655–663.

    Article  PubMed  CAS  Google Scholar 

  • Collins, R. L. (1967). A general nomparametric theory of genetic analysis. I. Application to classical cross.Genetics 56:551.

    Google Scholar 

  • Eriksson, K. (1971). Inheritance of behaviour towards alcohol in normal and motivated choice situations in mice.Ann. Zool. Fennici 8:400–405.

    Google Scholar 

  • Falconer, D. S. (1989).Introduction to Quantitative Genetics, 3rd ed., J. Wiley & Sons, New York.

    Google Scholar 

  • Fuller, J. L. (1964). Measurement of alcohol preference in genetic experiments.J. Comp. Physiol. Psychol. 57:85–88.

    PubMed  CAS  Google Scholar 

  • Fuller, J. L. (1974). Single-locus control of saccharin preference in mice.J. Hered. 65:33–36.

    PubMed  CAS  Google Scholar 

  • Fuller, J. L., and Collins, R. L. (1967). Ethanol preference in hybrids between a low and a high preference strain of mice.Genetics 56:560–561.

    Google Scholar 

  • Fuller, J. L., and Collins, R. L. (1972). Ethanol consumption and preference in mice: A genetic analysis.Ann. N.Y. Acad. Sci. 197:42–48.

    PubMed  CAS  Google Scholar 

  • Gentry, R. T., and Dole, V. P. (1987). Why does a sucrose choice reduce the consumption of alcohol in C57BL/6J mice?Life Sci. 40:2191–2194.

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson, T. A., Gilbertson, D. M., Monroe, W. T., Milliet, J. R., and Caprio, J. (1995). Citrate enhances behavioral and cellular gustatory responses to sweet and amino acid stimuli in mammals. InAbstracts of the AChemS-XVII, April 1995 (Sarasota, Florida), p. 235.

  • Ginsburg, E. Kh., and Kulikov, A. V. (1983). Verification of monogenic hypotheses in the hybridological analysis of quantitative characters.Genetika 19:571–576 (in Russian).

    CAS  Google Scholar 

  • Gora-Maslak, G., McClearn, G. E., Crabbe, J. C., Phillips, T. J., Belknap, J. K., and Plomin, R. (1991). Use of recombinant inbred strains to identify quantitative trait loci in psychopharmacology.Psychopharmacology 104:413–424.

    Article  PubMed  CAS  Google Scholar 

  • Grupp, L. A., Perlanski, E., and Stewart, R. B. (1991). Regulation of alcohol consumption by the renin-angiotensin system: A review of recent findings and a possible mechanism of action.Neurosci. Biobehav. Rev. 15:265–275.

    Article  PubMed  CAS  Google Scholar 

  • Hubell, C. L., Marglin, S. H., Spitalnic, S. J., Abelson, M. L., Wild, K. D., and Reid, L. D. (1991). Opioidergic, serotoninergic, and dopaminergic manipulations and rats' intake of a sweetened alcoholic beverage.Alcohol 8:355–367.

    Google Scholar 

  • Jinks, J. L., and Broadhurst, P. L. (1974). How to analyse the inheritance of behaviour in animals—the biometrical approach. In van Abeelen, J. H. F. (ed.),The Genetics of Behaviour, North-Holland, Amsterdam, pp. 1–41.

    Google Scholar 

  • Kiefer, S. W., and Lawrence, G. J. (1988). The sweet-bitter taste of alcohol: Aversion generalization to various sweet-quinine mixtures in the cat.Chem. Senses 13:633–641.

    CAS  Google Scholar 

  • Komura, S., Ueda, M., and Kobayashi, T. (1972). Effects of foster nursing on alcohol selection in inbred strains of mice.Q. J. Stud. Alcohol. 33:494–503.

    PubMed  CAS  Google Scholar 

  • Lush, I. E. (1981). The genetics of tasting in mice. I. Sucrose octaacetate.Genet. Res. 44:151–160.

    Google Scholar 

  • Lush, I. E. (1984). The genetics of tasting in mice. III. Quinine.Genet. Res. 44:151–160.

    PubMed  CAS  Google Scholar 

  • Lush, I. E. (1989). The genetics of tasting in mice. VI. Saccharin, acesulfame, dulcin and sucrose.Genet. Res. 53:95–99.

    PubMed  CAS  Google Scholar 

  • Lush, I. E. (1991). The genetics of bitterness, sweetness, and saltiness in strains of mice. In Wysocki, C. J., and Kare, M. R. (eds.),Chemical Senses, Vol. 3: Genetics of Perception and Communication, Marcel Dekker, New York, pp. 227–241.

    Google Scholar 

  • MacLean, C. J., Morton, N. E., Elston, R. C., and Yee, S. (1976). Skewness in commingled distributions.Biometrics 32:695–699.

    PubMed  CAS  Google Scholar 

  • Mather, K., and Jinks, J. L. (1977).Introduction to Biometrical Genetics, Cornell University Press, New York.

    Google Scholar 

  • McClearn, G. E., and Rodgers, D. (1961). Genetic factors in alcohol preference of laboratory mice.J. Comp. Physiol. Psychol. 54:116–119.

    Google Scholar 

  • Nachman, M., Larue, C., and Le Magnen, J. (1971). The role of olfactory and orosensory factors in the alcohol preference of inbred strains of mice.Physiol. Behav. 6:53–95.

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya, Y., and Funakoshi, M. (1993). Genetic and neurobehavioral approaches to the taste receptor mechanism in mammals. In Simon, S. A., and Roper, S. O. (eds.),Mechanisms of Taste Transduction, CRC Press, Boca Raton, FL, pp. 253–272.

    Google Scholar 

  • Ninomiya, Y., Higashi, T., Mizukoshi, T., and Funakoshi, M. (1987). Genetics of the ability to perceive sweetness of dphenylalanine in mice.Ann. N.Y. Acad. Sci. 510:527–529.

    Google Scholar 

  • Overstreet, D. H., Kampov-Polevoy, A. B., Rezvani, A. H., Murelle, L., Halikas, J. A., and Janowsky, D. S. (1993). Saccharin intake predicts ethanol intake in genetically heterogeneous rats as well as different rat strains.Alcohol Clin. Exp. Res. 17:366–369.

    PubMed  CAS  Google Scholar 

  • Pelchat, M. L., and Danowski, S. (1992). A possible genetic association between PROP-tasting and alcoholism.Physiol. Behav. 51:1261–1266.

    Article  PubMed  CAS  Google Scholar 

  • Pelz, W. E., Whitney, G., and Smith, J. C. (1973). Genetic influences on saccharin preference of mice.Physiol. Behav. 10:263–265.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, T. J., Crabbe, J. C., Metten, P., and Belknap, J. K. (1994). Localization of genes affecting alcohol drinking in mice.Alcohol Clin. Exp. Res. 18:931–941.

    PubMed  CAS  Google Scholar 

  • Pickett, R. A., and Collins, A. C. (1975). Use of genetic analysis to test the potential role of serotonin in alcohol preference.Life Sci. 17:1291–1296.

    Article  PubMed  CAS  Google Scholar 

  • Price, R. A., Sorensen, T. I., and Stunkard, A. J. (1989). Component distributions of body mass index defining moderate and extreme overweight in Danish women and men.Am. J. Epidemiol. 130:193–201.

    PubMed  CAS  Google Scholar 

  • Pucilowski, O., Rezvani, A. H., and Jonowsky, D. S. (1992). Suppression of alcohol and saccharin preference in rats by a novel Ca2+ channel inhibitor, Goe 5438,Psychopharmacology 107:447–452.

    Article  PubMed  CAS  Google Scholar 

  • Ramirez, I., and Fuller, J. L. (1976). Genetic influence on water and sweetened water consumption in mice.Physiol. Behav. 16:163–168.

    Article  PubMed  CAS  Google Scholar 

  • Randall, C. L., and Lester, D. (1975). Cross-fostering of DBA and C57B1 mice: Increase in voluntary consumption of alcohol by DBA weanlings.J. Stud. Alcohol. 36:973–980.

    PubMed  CAS  Google Scholar 

  • Reed, D. R., Bartoshuk, L. M., Duffy, V., Marino, S., and Price, R. A. (1995). PROP tasting: Determination of underlying thresholds distributions using maximum likelihood.Chem. Senses 20:529–533.

    PubMed  CAS  Google Scholar 

  • Rodriguez, L. A., Plomin, R., Blizard, D. A., Jones, B. C., and McClearn, G. E. (1995). Alcohol acceptance, preference, and sensitivity in mice. II. Quantitative trait loci mapping analysis using BXD recombinant inbred strains.Alcohol Clin. Exp. Res. 19:367–373.

    PubMed  CAS  Google Scholar 

  • Sollars, S. I., Midkiff, E. E., and Bernstein, I. L. (1990). Genetic transmission of NaCl aversion in the Fisher-334 rat.Chem. Senses 15:521–527.

    CAS  Google Scholar 

  • Stewart, R. B., Russell, R. N., Lumeng, L., Li, T.-K., and Murphy, J. M. (1994). Consumptions of sweet, salty, sour, and bitter solutions by selectively bred alcohol-preferring and alcohol-nonpreferring lines of rats.Alcohol Clin. Exp. Res. 18:375–381.

    PubMed  CAS  Google Scholar 

  • Stockton, M. D., and Whitney, G. (1974). Effects of genotype, sugar, and concentration on sugar preference of laboratory mice (Mus musculus).J. Comp. Physiol. Psychol. 86:62–68.

    PubMed  CAS  Google Scholar 

  • Thomas, K. (1969). Selection and avoidance of alcohol solutions by two strains of inbred mice and derived generations.Q. J. Stud. Alcohol 30:849–861.

    PubMed  CAS  Google Scholar 

  • Whitney, G., and Harder, D. B. (1994). Genetics of bitter perception in mice.Physiol. Behav. 56:1141–1147.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bachmanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bachmanov, A.A., Reed, D.R., Tordoff, M.G. et al. Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: A genetic analysis. Behav Genet 26, 563–573 (1996). https://doi.org/10.1007/BF02361229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02361229

Key Words

Navigation