Skip to main content
Log in

Nervous system and neural maps in gastropodHelix lucorum L.

  • Nervous Systems of the Snail
  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The present review summarizes the literature and provides new data concerning nervous system structure and the identification of individual neurons in the snail Helix lucorum. Information about especially well-known neurons is provided in a table, and maps of the identifiable neuron's location in ganglia are correlated with the results of retrograde staining via various cerebral and subesophageal nerves. References concerning the morphology of snail central nervous system and identifiable neurons are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Arakelov and T. A. Sakharova, “Structure-functional analysis of identified neurons in snails,”Zh. Vyssh. Nervn. Dyat.,26, No. 6, 1180–1187 (1979).

    Google Scholar 

  2. G. G. Arakelov and E. D. Shekhter, “Giant polyfunctional neuron in terestrial snails,”Zh. Vyssh. Nervn. Dyat.,31, No. 1, 96–105 (1981).

    CAS  Google Scholar 

  3. V. P. Babmindra, V. L. Xhuravlev, I. N. Pavlenko, and T. A. Saphonova et al., “Identification of snail neurons by peroxidase method,”Dokl. Akad. Nauk SSSR,245, No. 3, 743–745 (1979).

    Google Scholar 

  4. P. M. Balaban, E. G. Litvinov, “Command neurons in reflex arc of unconditioned reflex of the snail,”Zh. Vyssh. Nervn. Deyat.,27, 538–544 (1977).

    CAS  Google Scholar 

  5. P. M. Balaban, O. A. Maksimova, I. S. Zakharov, and V. N. Matz, “Electrophysiological characteristics of identifiable neurons in snailHelix lucorum,”Zh. Évol. Biokhim. Physiol.,17, No. 4, 366–371 (1981).

    Google Scholar 

  6. P. M. Balaban, I. S. Zakharov, and V. N. Matz, “Selective vital staining of serotonergic cells 5,7dihydroxytryptamine,”Dokl. Akad. Nauk SSSR,283, 735–738 (1985).

    Google Scholar 

  7. P. M. Balaban and R. Chase, “Interrelations of emotionally positive and negative brain zones in the snail,”Zh. Vyssh. Nervn. Deyat.,40, No. 1, 125–134 (1977).

    Google Scholar 

  8. P. M. Balaban, N. I. Bravarenko, and I. S. Zakharov, “Neurochemical base of recurrent inhibition in the reflex pathway underlying withdrawal,”Zh. Vyssh. Nervn. Devat.,41, No. 5, 1060–1065 (1991).

    Google Scholar 

  9. G. N. Galanina, I. S. Zakharov, O. A. Maximova, and P. M. Balaban, “Role of giant serotonergic cell of the snail cerebral ganglia in feeding behavior,”Zh. Vyssh. Nervn. Deyat.,36, No. 1, 110–116 (1991).

    Google Scholar 

  10. V. A. Dyatlov and A. V. Platoshin, “Subsynaptic modulation by metacerebral neurons of a chemical transmission of excitation in buccal ganglia of mollusc,”Neirophysiologiya,21, No. 4, 539–546 (1989).

    CAS  Google Scholar 

  11. I. S. Zakharov, V. N. Matz, and P. M. Balaban, “Participation of giant cerebral neuron in control of withdrawal behavior in the snail,”Neirophysiologiya,14, 353–358 (1982).

    Google Scholar 

  12. N. I. Kononenko, “Variability of electrical activity in neuron RPal of the snail,”Neirophysiologiya,13, No. 4, 398–404 (1981).

    CAS  Google Scholar 

  13. N. I. Kononenko and O. N. Osipenko, “Different effects of stimulation of peptidergic neuron on postsynaptic cells in CNS of snails,”Dokl. Akad. Nauk SSSR,306, 236–239 (1989).

    CAS  PubMed  Google Scholar 

  14. P. D. Lisachev and V. P. Tretyakov, “Structural basis of organization of motor program of avoidance reflex in snails,” in:Simple Nervous Systems (Abstracts), Leningrad, Nauka, (1988), p. 167–169.

    Google Scholar 

  15. P. D. Lisachev and V. P. Tretyakov, “Distribution of axons of neurons LPa3 and RPa3 in the nerves of pedal ganglia in snails,”Zh. Vyssh. Nervn. Deyat.,38, No. 6, 1132–1137 (1988).

    CAS  Google Scholar 

  16. O. A. Maksimova and P. M. Balaban,Neural Mechanisms of Behavioral Plasticity [in Russian], Nauka, Moscow (1983).

    Google Scholar 

  17. Ph. I. Samygin and L. D. Karpenko, “Localization of neurons innervating columellar muscles in snails,”Neirophysiologiya,12, 637–641 (1980).

    CAS  Google Scholar 

  18. D. A. Sakharov,Genealogy of Neurons [in Russian], Nauka, Moscow (1974).

    Google Scholar 

  19. T. Bang, “Zur morphologie des nervensystems vonHelix pomatia L.,”Zool. Anzeiger.,48, No. 9, 281–291 (1917).

    Google Scholar 

  20. P. M. Balaban, “Postsynaptic mechanisms of withrawal reflex sensitization in the snail,”J. Neurobiology,14, No. 5, 365–375 (1983).

    CAS  Google Scholar 

  21. P. M. Balaban and R. Chase, “Inhibition of cells involved in avoidance behavior by stimulation of mesocerebrum,”A. Comp. Physiol.,166, No. 3, 421–427 (1990).

    Google Scholar 

  22. T. H. Bullock, “The problem of recognition in an analyzer made of neurons,” in:Sensory Communications, W. A. Rosenblith (ed.), MIT Press, Cambridge (1961), p. 714–724.

    Google Scholar 

  23. R. Chase, “Brain cells that command sexual behavior in the snailHelix aspersa,”J. Neurobiol.,17, No. 6, 669–697 (1986).

    CAS  PubMed  Google Scholar 

  24. G. A. Cottrell and J. B. Macon, “Synaptic connections of two symmetrically placed giant serotonin-containing neurons,”J. Physiol.,236, No. 2, 435–464 (1974).

    CAS  Google Scholar 

  25. N. T. Davis, “Improved methods for cobalt filling and silver intensification of insect motor neurons,”Stain Technol.,57, No. 3, 239–244 (1982).

    CAS  PubMed  Google Scholar 

  26. R. C. Eaton and R. DiDomenico, “Command and the neural causation of behavior: A theoretical analysis of the necessity and sufficiency paradigm,”Brain, Behav. Evol.,27, No. 2, 132–164 (1985).

    CAS  Google Scholar 

  27. B. Eberhardt and R. W. Wabnitz, “Morphological identification and functional analysis of central neurons innervating the penis retractor muscle ofHelix pomatia,”Comp. Biochem. Physiol.,63A, No. 5, 599–613 (1979).

    Google Scholar 

  28. K. Elekes, L. Hernadi, and G. Kemenes, “Serotonin immunoreactive neurons in the CNS ofHelix andLymnaea,” in:Neurobiology of Invertebrates. Transmitters, Modulators and Receptors, J. Salanki, K. S. Rosza (eds). Budapest, Academial Kiado, 703–713 (1988).

    Google Scholar 

  29. K. Elekes and D. R. Nassel, “Distribution of FMRFamide-like immunoreactive neurons in the central nervous system of snailHelix pomatia,”Cell Tissue Res.:262, No. 1, 177–190 (1990).

    CAS  Google Scholar 

  30. L. Hernadi, G. Kemenes, and J. Salanki, “Central representation and functional connections of afferent and efferent pathways ofHelix pomatia L lip nerves,”Acta Biol. Acad. Sci Hung.,35, No. 1, 49–69 (1984).

    CAS  Google Scholar 

  31. G. Hoyle, “Generation of behavior: the orchestration hypothesis,” in:Feedback and Motor Control in Invertebrates and Vertebrates, W. J. P. Barnesa and M. H. Gladden (eds.), London, Groom Helm (1985), p. 5775.

    Google Scholar 

  32. V. N. Ierusalimsky and P. M. Balaban, “Functioning of identified snail neurons in electric fields,”J. Exp. Biol.,131, No. 1, 17–36 (1987).

    CAS  PubMed  Google Scholar 

  33. E. R. Kandel and L. Tauc, “Input organization of two symmetrical giant cells in the snail brain,”J. Physiol.,183, No. 1, 269–286 (1966).

    CAS  PubMed  Google Scholar 

  34. E. R. Kandel and I. Kupfermann, “The functional organization of invertebrate ganglia,”Ann. Rev. Physiol.,32, 193–258 (1970).

    CAS  Google Scholar 

  35. G. Kemenes, A. Vehovszky, I. Zakharov, and K. S. Rozsa, “Neuroethological analysis of the pneumostome opening involved into whole-body eversion ofHelix pomatia L.,” in:Neural Mechanisms of Behavior. Proceedings of the 2-nd Int. Congr. of Neuroethol., J. Erber, R. Menzel, H.-J. Pflunger et al. (eds.), Stuttgart, New York, Georg Thieme Verlag (1989), p. 50.

    Google Scholar 

  36. D. Kennedy, “Cryfish interneurons,”Physiologist,14, No. 1, 5–50 (1971).

    CAS  PubMed  Google Scholar 

  37. G. A. Kerkut, J. D. C. Lambert, R. J. Gayton, J. E. Loker, et al., “Mapping of nerve cells in the suboesophageal ganglia ofHelix aspersa,”Comp. Biochem. Physiol.,50A, No. 1, 1–25 (1975).

    Google Scholar 

  38. H. Kunze, “Uber den Aufban des Centralnervensystems vonHelix pomatia L. und die Struktur seiner elemente,”Zool. Anzeiger.,48, No. 8, 232–240 (1917).

    Google Scholar 

  39. H. Kunze, “Uber des standige Auftretken Bestimmter Zellelemente im Centralnervensystem vonHelix pomatia L.,”Zool. Anzeiger.,49, No. 1, 123–137 (1918).

    Google Scholar 

  40. I. Kupfermann and K. R. Weiss, “The command neuron concept,”Behav. Brain Sci.,1, No. 1, 3–20 (1978).

    Google Scholar 

  41. M. Leon-Olea, M. Sanchez-Alvarez, F. Camacho, and F. J. Alvarez-Leefmans, “Distribution and seasonal variations of the immunoreactivity to Leu- and Met- enkephalins in the periesophageal ganglia of the snailHelix aspersa,”Neurosci. Abstr., No. 385 (1991), p. 18.

    Google Scholar 

  42. A. D. McClellan, “Command systems for initiating locomotion in fish and amphibians: Parallels to initiation systems in mammals,” in:Neurobiology of Vertebrate Locomotion, H. Grillner, S. Stein (eds), MacMillan Press, New York (1986), p. 3–20.

    Google Scholar 

  43. N. J. Strausfeld and T. A. Miller (eds),Neuroanatomical Techniques. Insect Nervous System, Heidel berg-Springer-Verlag, New York-Berlin (1980).

    Google Scholar 

  44. L. Heimer and L. Zaborszky (eds),Neuroanatomical-Tract Tracing Methods. 2, Plenum Publishing Corporation, New York (1989).

    Google Scholar 

  45. M. Pasic, D. Zecevic, and D. Ristanovic, “Prolonged effects of electrical stimulation of the peripheral nerves on a bursting neuron in the snail ganglion,” inNeurobiology of Invertebrates. Gastropoda Brain, J. Salanki (ed), Budapest, Akademiai Kiado, (1976), p. 547–560.

    Google Scholar 

  46. V. W. Pentreath, N. N. Osborne, and G. A. Cottrell, “Anatomy of giant serotonin containing neurons in the cerebral ganglia ofHelix pomatia andLimax maximus,” Z. Zellforsch.,143, No. 1, 1–20 (1973).

    CAS  PubMed  Google Scholar 

  47. J. Pusztai, L. Detari, and G. Szenasi, “Electrophysiological and morphological characteristics of neurons of the snail,Helix pomatia L.,” inNeurobiology of Invertebrates. Gastropoda Brain, J. Salanki (ed), Budapest, Akademii Kiado (1976), p. 111–121.

    Google Scholar 

  48. D. A. Sakharov and J. Salanki, “Physiological and pharmacological identification of neurons in the central nervous system ofHelix pomatia L.,”Acta Physiol. Hung.,35, No. 1, 19–30.

  49. E. Schmalz, “Zur Morphologie des Nervensystem vonHelix pomatia,”Zeit. Wissenshaften. Zool.,111, 509–568 (1914).

    Google Scholar 

  50. R. W. Sperry, “A modified concept of consciousness,”Physiol. Rev,76, 532–536 (1969).

    CAS  Google Scholar 

  51. K. S., Rozsa and J. Salanki, “Responses of central neurones to the stimulation of heart chemoreceptors in the snail,Helix pomatia L.,”Ann. Biol. Tihany.,40, No. 1, 95–108 (1973).

    Google Scholar 

  52. K. S. Rozsa, “Neuronal network underlying the regulation of heart beat inHelix pomatia L.,” in:Neurobiology of Invertebrates. Gastriopoda Brain, J. Salanki (ed), Budapest, Akademiai Kiado (1976), p. 597–613.

    Google Scholar 

  53. Van H. Wilsenburg and J. V. Milligan, “Neurons in the suboeesophageal ganglion complex of the snail,Helix pomatia, having a functional relation to cardio-respiratory activity,” in:Neurobiology of Invertebrates. Gastropoda Brain. J. Salanki (ed), Budapest, Akademiai Kiado (1976), p. 615–627.

    Google Scholar 

  54. W. Winlow and N. I. Syed, “Modulation of behavior by a multiganglionic neuronal ensemble,” in:Signal Molecules and Behavior, W. Winlow, O. S. Vinogradova, and D. A. Sakharov (eds), Manchester University Press, Manchester-New York (1991), p. 85–100.

    Google Scholar 

  55. A. Vehovszky, G. Kemenes, and K. S. Rozsa, “Central and peripheral connections of an identified pedal neuron modifying pneumostome movements inHelix,”Comp. Biochem. Physiol.,94A, No. 6, 735–741 (1989).

    Google Scholar 

  56. C. A. G. Wiersma, “Function of the giant fibers of the central nervous system of the crayfish,”Proc. Soc. Exper. Biol. Med.,38, No. 4, 661–661 (1938).

    Google Scholar 

  57. C. A. G. Wiersma, “Neurons of arthropods,” Cold Spring Harbor Symp. Quant. Biol.,17, 155–163 (1952).

    CAS  PubMed  Google Scholar 

  58. C. A. G. Wiersma, and K. Ikeda, “Interneurons commanding swimmeret movements in the crayfishProcambarus clarkii (Girard),”Comp. Biochem. Physiol.,12, No. 4, 509–525 (1964).

    CAS  PubMed  Google Scholar 

  59. P. Weiss, “1+1=2 (When one plus one does not equal two),” in:The Neuroscience: A Study Program, Rockefeller Press, New York (1967), p. 801–832.

    Google Scholar 

  60. J. Z. Young, “The functioning of the giant nerve fibers of the squid,”J. Exptl. Biol.,15, No. 1, 170–185 (1938).

    Google Scholar 

  61. I. S. Zakharov, and P. M. Balaban, “Serotonergic modulation of avoidance behavior inHelix,” in:Simpler Nervous Systems, D. A. Sakharov, W. Winlow(eds.), Manchester University Press, Manchester-New York (1991), p. 316–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel'nosti imeni I. P. Pavlova, Vol. 42, No. 6, pp. 1075–1089, November–December, 1992.

Translated by P. M. Balaban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ierusalimsky, V.N., Zakharov, I.S., Palikhova, T.A. et al. Nervous system and neural maps in gastropodHelix lucorum L.. Neurosci Behav Physiol 24, 13–22 (1994). https://doi.org/10.1007/BF02355648

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02355648

Keywords

Navigation