Skip to main content
Log in

An efficient control strategy for dosage regimens

  • Pharmacometrics
  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

In medical drug therapy, efficient dosage strategies are needed to maintain target drug concentrations. The relationship between the concentration of a drug and the dosages is often described by compartment models in which the parameters are unknown, although prior knowledge may be available and can be updated after blood samples are taken during the therapy. Currently MAP (maximum a posteriori) Bayesian is the most often used control strategy in this setting. We show by simulation in a one-compartment context that the performance of the MAP Bayesian strategy depends on the assumptions in prior distribution of the parameters as well as the cost function. We propose an alternative control strategy, VU, that outperforms and is more robust than the MAP Bayesian strategy in a variety of problem settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gibaldi and D. Perrier.Pharmacokinetics, Marcel Dekker, New York, 1982.

    Google Scholar 

  2. D. Z. D'Argenio and D. Katz. Application of stochastic control methods to the problem of individualising intravenous theophylline therapy.Biomed. Meas. Inform. Contr. 2, No. 3 (1988).

    Google Scholar 

  3. R. W. Jelliffe and A. Schumitzky. Modeling, adaptive control, and optimal drug therapy.Med. Prog. Technol. 16:95–100 (1990).

    CAS  PubMed  Google Scholar 

  4. P. O. Maitre and D. R. Stanski. Bayesian forecasting improves the prediction of intraoperative plasma concentration of alfentanil.Anesthesiology 69:652–659 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. L. B. Sheiner, S. Beal, B. Rosenberg, and V. V. Marathe. Forecasting individual pharmacokinetics.Clin. Pharmacol. Ther. 26:294–305 (1979).

    CAS  PubMed  Google Scholar 

  6. S. L. Shafer, J. R. Varvel, N. Aziz, and J. C. Scott. Pharmacokinetics of fentanyl administered by computer-controlled infusion pump.Anesthesiology 73:1091–1102 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. S. Vozeh, M. Berger, M. Wenk, R. Ritz, and F. Follath. Rapid prediction of individual dosage requirements for lignocaine.Clin. Pharmacokin. 9:353–63 (1984).

    Article  Google Scholar 

  8. S. Vozeh, R. Hillman, M. Wandell, T. Ludden, and L. Sheiner. Computer-assisted drug assay interpretation based on Bayesian estimation of individual pharmacokinetics: Application to lidocaine.Ther. Drug Monit. 7:66–73 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. S. Vozeh and C. Steiner. Estimates of the population pharmacokinetic parameters and performance of Bayesian feedback: A sensitivity analysis.J. Pharmacokin. Biopharm. 15:511–528 (1987).

    Article  CAS  Google Scholar 

  10. W. S. Lovejoy. Suboptimal policies, with bounds, for parameter adaptive decision processes.Operations Res. 41:583–599 (1993).

    Article  Google Scholar 

  11. P. O. Maitre, S. Vozeh, J. Heykants, D. A. Thomson, and D. R. Stanski. Population pharmacokinetics of alfentanil: The average dose-plasma concentration relationship and interindividual variability in patients.Anesthesiology 66:3–12 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. A. Gaillot, J. Steiner, A. Mallet, J. Thebault, and A. Bleder. A prior lithium dosage regimen using population characteristics of pharmacokinetic parameters.J. Pharmacokin. Biopharm. 7:579–628 (1979).

    Article  CAS  Google Scholar 

  13. D. P. Bertsekas.Dynamic Programming: Deterministic and Stochastic Models, Prentice-Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  14. J. O. Berger.Statistical Decision Theory and Bayesian Analysis, 2nd ed., Springer-Verlag, New York, 1985.

    Book  Google Scholar 

  15. A. Mallet. A maximum likelihood estimation method for random coefficient regression models.Biometrika 73:645–656 (1986).

    Article  Google Scholar 

  16. S. E. Dreyfus and A. M. Law.The Art and Theory of Dynamic Programming, Academic Press, New York, 1979.

    Google Scholar 

  17. D. P. Heyman and M. J. Sobel.Stochastic Models in Operations Research, McGraw-Hill, New York, 1984.

    Google Scholar 

  18. G. N. Saridis and T. K. Dao. A learning approach to the parameter-adaptive selforganizing control problem.Automatica. 8:589–597 (1972).

    Article  Google Scholar 

  19. K. M. Van Hee.Bayesian Control of Markov Chains, Mathematical Centre Tract 95, Amsterdam, 1978.

  20. W. S. Lovejoy. Myopic policies for some inventory models with uncertain demand distributions.Manage. Sci. 36, No. 6 (1990).

    Google Scholar 

  21. W. S. Lovejoy. Stopped myopic policies in some inventory models with generalized demand processes.Manage. Sci. 38, No. 5 (1992).

    Google Scholar 

  22. P. E. Gill, W. Murray, and M. H. Wright.Practical Optimization, Academic Press, London, 1981.

    Google Scholar 

  23. C. Hu, W. S. Lovejoy, and S. L. Shafer. Comparison of some suboptimal control policies in medical drug theory.Operation Research (to appear).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially funded by Palo Alto Institute for Research and Education, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, C., Lovejoy, W.S. & Shafer, S.L. An efficient control strategy for dosage regimens. Journal of Pharmacokinetics and Biopharmaceutics 22, 73–94 (1994). https://doi.org/10.1007/BF02353411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02353411

Key Words

Navigation