Skip to main content
Log in

Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

The flexibility of the scoliotic spine is an important biomechanical parameter to take into account in the planning of surgical instrumentation. The objective of the paper was to develop a method to characterisein vivo the mechanical properties of the scoliotic spine using a flexible multi-body model. Vertebrae were represented as rigid bodies, and intervertebral elements were defined at every level using a spherical joint and three torsion springs. The initial mechanical properties of motion segments were defined fromin vitro experimental data reported in the literature. They were adjusted using an optimisation algorithm to reduce the discrepancy between the simulated and the measured Ferguson angles in lateral bending of three spine segments (major or compensatory left thoracic, right thoracic and left lumbar scoliosis curves). The flexural rigidity of the spine segments was defined in three categories (flexible, nominal, rigid) according to the estimated mechanical factors (α). This approach was applied with ten scoliotic patients under-going spinal correction. Personalisation of the model resulted in an increase of the initial flexural rigidity for seven of the ten lumbar segments (1.38≤α≤10.0) and four of the ten right thoracic segments (1.74≤α≤5.18). The adjustment of the mechanical parameters based on the lateral bending tests improved the model's ability to predict the spine shape change described by the Ferguson angles by up to 50%. The largest differences after personalisation were for the left lumbar segments in left bending (40±30). Thein vivo identification of the mechanical properties of the scoliotic spine will improve the ability of biomechanical models adequately to predict the surgical correction, which should help clinicians in the planning of surgical instrumentation manoeuvres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M. A. (1995): ‘Mechanical testing of the spine. An appraisal of methodology, results, and conclusions’,Spine,20, pp. 2151–2156

    Google Scholar 

  • Aronsson, D. D., Stokes, I. A., Ronchetti, P. J., andRichards, B. S. (1996): ‘Surgical correction of vertebral axial rotation in adolescent idiopathic scoliosis: prediction by lateral bending films’,J. Spinal Disord.,9, pp. 214–219

    Google Scholar 

  • Aubin, C. É., Descrimes, J. L., Dansereau, J., Skalli, W., Lavaste, F., andLabelle, H. (1995): ‘Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method (in French)’,Ann. Chir.,49, pp. 749–761

    Google Scholar 

  • Aubin, C. É., Petit, Y., Stokes, I. A. F., Poulin, F., andGardner-Morse, M. (2003): ‘Biomechanical modeling of posterior instrumentation of the scoliotic spine’,Comput. Methods Biomech. Biomed. Eng.,6, pp. 27–32

    Google Scholar 

  • Cheriet, F., Dansereau, J., Petit, Y., Aubin, C. É., Labelle, H., andDe Guise, J. A. (1999): ‘Towards the self-calibration of a multi-view radiographic imaging system for the 3D reconstruction of the human spine and rib cage’,Int. J. Pattern Recognit. Artif. Intell.,13, pp. 761–779

    Google Scholar 

  • Cheung, K. M., andLuk, K. D. (1997): ‘Prediction of correction of scoliosis with use of the fulcrum bending radiograph’J. Bone Joint Surg. Am.,79, pp. 1144–1150

    Google Scholar 

  • Cripton, P. A., Bruehlmann, S. B., Orr, T. E., Oxland, T. R., andNolte, L. P. (2000): ‘In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts’,J. Biomech.,33, pp. 1559–1568

    Article  Google Scholar 

  • Gardner-Morse, M., andStokes, I. A. (1994): ‘Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation’,J. Biomech.,27, pp. 177–181

    Article  Google Scholar 

  • Ghista, D. N., Viviani, G. R., Subbaraj, K., Lozada, P. J., Srinivasan, T. M., andBarnes, G. (1988): ‘Biomechanical basis of optimal scoliosis surgical correction’,J. Biomech.,21, pp. 77–88

    Article  Google Scholar 

  • Klepps, S. J., Lenke, L. G., Bridwell, K. H., Bassett, G. S., andWhorton, J. (2001): ‘Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis’,Spine,26, pp. E74-E79

    Article  Google Scholar 

  • Leborgne, P., Skalli, W., Lecire, C., Dubousset, J., Zeller, R., andLavaste, F. (1999): ‘Simulations of CD surgery on a personalized finite element model: preliminary results’, in ‘Research into spinal deformities 2’ (IOS Press, Amsterdam, 1999), pp. 126–129

    Google Scholar 

  • Matsumoto, T., Kitahara, H., Minami, S., Takahashi, K., Yamagata, M., Moriya, H., andTamaki, T. (1997): ‘Flexibility in the scoliotic spine: three-dimensional analysis’,J. Spinal Disord.,10, pp. 125–131

    Google Scholar 

  • Moe, J., Winter, R., Bradford, D., andLonstein, J. (1978): ‘Scoliosis and other spinal deformities’, (W. B. Saunders Co. Philadelphia, 1978)

    Google Scholar 

  • Oxland, T. R., Lin, R. M., andPanjabi, M. M. (1992): ‘Three-dimensional mechanical properties of the thoracolumbar junction’,J. Orthop. Res.,10, pp. 573–580

    Article  Google Scholar 

  • Panjabi, M. M., Brand, R. A. Jr., andWhite, A. A. III. (1976a): ‘Three-dimensional flexibility and stiffness properties of the human thoracic spine’,J. Biomech.,9, pp. 185–192

    Article  Google Scholar 

  • Panjabi, M. M., Brand, R. A. Jr., andWhite, A. A. III. (1976b): ‘Mechanical properties of the human thoracic spine as shown by three-dimensional load-displacement curves’,J. Bone Joint Surg. Am.,58, pp. 642–652

    Google Scholar 

  • Panjabi, M. M., Oxland, T. R., Yamamoto, I., andCrisco, J. J. (1994): ‘Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves’,J. Bone Joint Surg. Am.,76 pp. 413–424

    Google Scholar 

  • Patwardhan, A. G., Havey, R. M., Meade, K. P., Lee, B., andDunlap, B. (1999): ‘A follower load increases the load-carrying capacity of the lumbar spine in compression’,Spine,24, pp. 1003–1009

    Article  Google Scholar 

  • Perdriolle, R. (1979): ‘La scoliose: son étude tridimensionnelle’ (Maloine S.A., Paris, 1979)

    Google Scholar 

  • Petit, Y., Aubin, C. É., andLabelle, H. (2003): ‘Spinal shape changes resulting from scoliotic spine surgical instrumentation expressed as intervertebral rotations and centers of rotation’,J. Biomech. (accepted for publication)

  • Polly, D. W. Jr., andSturm, P. F. (1998): ‘Traction versus supine side bending. Which technique best determines curve flexibility?’,Spine,23, pp. 804–808

    Google Scholar 

  • Poulin, F., Aubin, C. É., Stokes, I. A., Gardner-Morse, M., andLabelle, H. (1998): ‘Bromechanical modeling of instrumentation for the scoliotic spine using flexible elements: a feasibility study (in French)’,Ann. Chir.,52, pp. 761–767

    Google Scholar 

  • Sevastik, J. A., andStokes, I. A. F. (2000): ‘Idiopathic scolios terminology’, in ‘SPINE: State of the art reviews’ (Philadelphia, 2000), pp 299–303

  • SRS Working Group on Spinal Classification Nomenclature (2003): ‘SRS glossary of scoliosis terms’, http://www.srs. org/htm/glossary/nomenclature.htm

  • Stokes, I. A., Aronson, D. D., Ronchetti, P. J., Labelle, H., andDansereau, J. (1993): ‘Reexamination of the Cobb and Ferguson angles: bigger is not always better’,J. Spinal Disord.,6, pp. 333–338

    Google Scholar 

  • Stokes, I. A. F., Gardner-Morse, M., Aubin, C. É., Poulin, F., andLabelle, H. (1999): ‘Biomechanical simulations for planning of scoliosis surgery’, in ‘Research into spinal deformities 2’ (IOS Press, Amsterdam, 1999),59, pp. 343–346

    Google Scholar 

  • Vanderby, R., Daniele, M., Patwardhan, A., andBunch, W. (1986): ‘A method for the identification of in-vivo segmental stiffness properties of the spine’,J. Biomech. Eng.,108, pp. 312–316

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petit, Y., Aubin, C.É. & Labelle, H. Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med. Biol. Eng. Comput. 42, 55–60 (2004). https://doi.org/10.1007/BF02351011

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02351011

Keywords

Navigation