Skip to main content
Log in

Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A biomechanical model was developed to evaluate the long-term correction resulting from rib shortening or lengthening in adolescent idiopathic scoliosis (AIS). A finite element model of the trunk, personalised to the geometry of a scoliotic patient, was used to simulate rib surgery. Stress relaxation of ligaments following surgery was integrated into the model, as well as longitudinal growth of vertebral bodies and ribs and its modulation due to mechanical stresses. Simulations were performed in an iterative fashion over 24 months. A concave side rib shortening, inducing load patterns on the vertebral end-plates that could act against the scoliosis progression, was tested. A fractional factorial experimental design of 16 runs documented the effects of six modelling parameters. Wedging of the apical vertebra in the frontal plane decreased from 5.2° initially to a mean value of 3.8° after 24 months. The wedging decrease in the thoracic apical region was reflected by changes in the spine curvature, with a Cobb angle decrease from 46° to 44° immediately after the surgery and to a mean of 41° after 24 months. However, both rib hump and vertebral axial rotation increased, on average, by 4° at the curve apex. The most significant parameters were the growth sensitivity to stress in ribs and vertebrae and the rate of stress relaxation of intercostal ligaments. The results confirmed the potential of long-term correction of spinal curvature resulting from the rib shortening on the concavity. This modelling approach could be used for further design of less invasive surgery, taking into account residual growth, for scoliosis correction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arkin, A. M., andKatz, J. F. (1956): ‘The effects of pressure on epiphyseal growth. The mechanism of plasticity of growing bone’,J. Bone Joint Surg. Am.,38-A, pp. 1056–1076

    Google Scholar 

  • Aubin, C. E., Descrimes, J. L., Dansereau, J., Skalli, W., Lavaste, F., andLabelle, H. (1995): ‘Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method’,Ann. Chir.,49, pp. 749–761

    Google Scholar 

  • Aubin, C. E., Dansereau, J., Petit, Y., Parent, F., De Guise, J. A., andLabelle, H. (1998): ‘Three-dimensional measurement of wedged scoliotic vertebrae and intervertebral disks’,Eur. Spine J.,7, pp. 59–65

    Article  Google Scholar 

  • Carrier, J., Aubin, C. E., Trochu, F., andLabelle, H. (2004): ‘Optimization of rib surgery parameters for the correction of scoliotic deformities using dual kriging’,J. Biomech. Eng.-Trans. ASME, (accepted for publication).

  • Deguchi, M., Kawakami, N., Kanemura, T., Mimatsu, K., andIwata, H. (1995): ‘Experimental scoliosis induced by rib resection in chickens’,J. Spinal Disord.,8, pp. 179–185

    Article  Google Scholar 

  • Deguchi, M., Kawakami, N., andKanemura, T. (1996): ‘Correction of scoliosis by rib resection in pinealectomized chickens’,J. Spinal Disord.,9, pp. 207–213

    Article  Google Scholar 

  • Deguchi, M., Kawakami, N., andKanemura, T. (1997): ‘Correction of experimental scoliosis by rib resection in transverse plane’,J. Spinal Disord.,10, pp. 197–203

    Article  Google Scholar 

  • Delorme, S., Violas, P., Dansereau, J., De Guise J., Aubin, C. E., andLabelle, H. (2001): ‘Preoperative and early postoperative three-dimensional changes of the rib cage after posterior instrumentation in adolescent idiopathic scoliosis’,Eur. Spine J.,10, pp. 101–106

    Article  Google Scholar 

  • Delorme, S., Petit, Y., De Guise, J. A., Labelle, H., Aubin, C. E., andDansereau, J. (2003): ‘Assessment of the 3D reconstruction and high-resolution geometrical modelling of the human skeletal trunk from 2D radiographic images’,IEEE Trans. Biomed. Eng.,50, pp. 989–998

    Article  Google Scholar 

  • Descrimes, J. L., Aubin, C. E., Skalli, W., Zeller, R., Dansereau, J., andLavaste, F. (1995): ‘Modelling of facet joints in a finite element model of the scoliotic spine and thorax: mechanical aspects’,Rachis,7, pp. 301–314

    Google Scholar 

  • Diméglio, A., andBonnel, F. (1990): ‘Le rachis en croissance scoliose, taille assise et puberté’ (Springer-Verlag, Paris, New York, 1990)

    Google Scholar 

  • Fung, Y. C. (1972): ‘Stress-strain-history relations of soft tissues in simple elongation’ inFung, Y. C., Perrone, N., andAnliker, M. (Eds): ‘Biomechanics: its foundations and objectives’ (Prentice-Hall, San Diego, California, Englewood Cliffs, NJ, 1972)

    Google Scholar 

  • Grealou, L., Aubin, C. E., andLabelle, H. (2002): ‘Rib cage surgery for the treatment of scoliosis: a biomechanical study of correction mechanisms’,J. Orthop. Res.,20, pp. 1121–1128

    Article  Google Scholar 

  • Labelle, H., Dansereau, J., Bellefleur, C., andJequier, J. C. (1995): ‘Variability of geometric measurements from three-dimensional reconstructions of scoliotic spines and rib cages’,Eur. Spine J.,4, pp. 88–94

    Article  Google Scholar 

  • Lenke, L. G., Bridwell, K. H., Blanke, K., andBaldus, C. (1995): ‘Analysis of pulmonary function and chest cage dimension changes after thoracoplasty in idiopathic scoliosis’,Spine,20, pp. 1343–1350

    Google Scholar 

  • Montgomery, D. C. (2001): ‘Design and analysis of experiments’, 5th edn, (Wiley, New York, 2001)

    Google Scholar 

  • Perdriolle, R., Becchetti, S., Vidal, J., andLopez, P. (1993): ‘Mechanical process and growth cartilages. Essential factors in the progression of scoliosis’,Spine,18, pp. 343–349

    Article  Google Scholar 

  • Piggott, H. (1971): ‘Posterior rib resection in scoliosis. A preliminary report’,J. Bone Joint Surg. Br.,53, pp. 663–671

    Google Scholar 

  • Puso, M. A., andWeiss, J. A. (1998): ‘Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation’,J. Biomech. Eng.,120, pp. 62–70

    Article  Google Scholar 

  • Rajwani, T., Bhargava, R., Moreau, M., Mahood, J., Raso, V. J., Jiang, H., andBagnall, K. M. (2002): ‘MRI characteristics of the neurocentral synchondrosis’,Pediatr. Radiol.,32, pp. 811–816

    Article  Google Scholar 

  • Sevastik, J. A., Agadir, M., andSevastik, B. (1990): ‘Effects of rib elongation on the spine. II. Correction of scoliosis in the rabbit’,Spine,15, pp. 826–829

    Article  Google Scholar 

  • Sevastik, B., Willers, U., Hedlund, R., Sevastik, J. A., andKristjansson, S. (1993): ‘Scoliosis induced immediately after mechanical medial rib elongation in the rabbit’,Spine,18, pp. 923–926

    Article  Google Scholar 

  • Sevastikoglou, J. A., Aaro, S., Lindholm, T. S., andDahlborn, M. (1978): ‘Experimental scoliosis in growing rabbits by operations on the rib cage’,Clin. Orthop.,136, pp. 282–286

    Google Scholar 

  • Snellman, O. (1973): ‘Growth and remodelling of the ribs in normal and scoliotic pigs’,Acta Orthop. Scand. Suppl.,149, pp. 1–85

    Google Scholar 

  • Stokes, I. A., andLaible, J. P. (1990): ‘Three-dimensional osseoligamentous model of the thorax representing initiation of scoliosis by asymmetric growth’,J. Biomech.,23, pp. 589–595

    Article  Google Scholar 

  • Stokes, I. A., Aronsson, D. D., andUrban, J. P. G. (1994): ‘Biomechanical factors influencing progression of angular skeletal deformities during growth’,Eur. J. Exp. Musculoskel. Res.,3, pp. 51–60

    Google Scholar 

  • Stokes, I. A., Spence, H., Aronsson, D. D., andKilmer, N. (1996): ‘Mechanical modulation of vertebral body growth. Implications for scoliosis progression’,Spine,21, pp. 1162–1167

    Article  Google Scholar 

  • Stokes, I. A., Aronsson, D. D., Spence, H., andIatridis, J. C. (1998): ‘Mechanical modulation of intervertebral disc thickness in growing rat tails’,J. Spinal Disord.,11, pp. 261–265

    Article  Google Scholar 

  • Stokes, I. A. (2002): ‘Mechanical effects on skeletal growth’,J. Musculoskel. Neuron. Interact.,2, pp. 277–280

    Google Scholar 

  • Taylor, J. R. (1975): ‘Growth of human intervertebral discs and vertebral bodies’,J. Anat.,120, pp. 49–68

    Google Scholar 

  • Villemure, I., Aubin, C. E., Grimard, G., Dansereau, J., andLabelle, H. (2001): ‘Progression of vertebral and spinal three-dimensional deformitites in adolescent idiopathic scoliosis: a longitudinal study’,Spine,26, pp. 2244–2250

    Article  Google Scholar 

  • Villemure, I., Aubin, C. E., Dansereau, J., andLabelle, H. (2002): ‘Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation’,J. Biomech. Eng.,124, pp. 784–790

    Article  Google Scholar 

  • Vital, J. M., Beguiristain, J. L., Algara, C., Villas, C., Lavignollem, B., Grenier, N., andSenegas, J. (1989): ‘The neurocentral vertebral cartilage: anatomy, physiology and physiopathology’,Surg. Radiol. Anat.,11, pp. 323–328

    Article  Google Scholar 

  • Xiong, B., andSevastik, J. A. (1998): ‘A physiological approach to surgical treatment of proressive early idiopathic scoliosis’,Eur. Spine J.,7, pp. 505–508

    Article  Google Scholar 

  • Yahia, L. H., Audet, J., andDrouin, G. (1991): ‘Rheological properties of the human lumbar spine ligaments’,J. Biomed. Eng.,13, pp. 399–406

    Article  Google Scholar 

  • Yamazaki, A., Mason, D. E., andCaro, P. A. (1998): ‘Age of closure of the neurocentral cartilage in the thoracic spine’,J. Pediatr. Orthop.,18, pp. 168–172

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. -É. Aubin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrier, J., Aubin, C.É., Villemure, I. et al. Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med. Biol. Eng. Comput. 42, 541–548 (2004). https://doi.org/10.1007/BF02350997

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02350997

Keywords

Navigation