Skip to main content
Log in

De novo and inverse folding predictions of protein structure and dynamics

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

In the last two years, the use of simplified models has facilitated major progress in the globular protein folding problem, viz., the prediction of the three-dimensional (3D) structure of a globular protein from its amino acid sequence. A number of groups have addressed the inverse folding problem where one examines the compatibility of a given sequence with a given (and already determined) structure. A comparison of extant inverse protein-folding algorithms is presented, and methodologies for identifying sequences likely to adopt identical folding topologies, even when they lack sequence homology, are described. Extension to produce structural templates or fingerprints from idealized structures is discussed, and for eight-membered β-barrel proteins, it is shown that idealized fingerprints constructed from simple topology diagrams can correctly identify sequences having the appropriate topology. Furthermore, this inverse folding algorithm is generalized to predict elements of supersecondary structure including β-hairpins, helical hairpins and α/β/α fragments. Then, we describe a very high coordination number lattice model that can predict the 3D structure of a number of globular proteins de novo; i.e. using just the amino acid sequence. Applications to sequences designed by DeGrado and co-workers [Biophys. J., 61 (1992) A265] predict folding intermediates, native states and relative stabilities in accord with experiment. The methodology has also been applied to the four-helix bundle designed by Richardson and co-workers [Science, 249 (1990) 884] and a redesigned monomeric version of a naturally occurring four-helix dimer, rop. Based on comparison to the rop dimer, the simulations predict conformations with rms values of 3–4 Å from native. Furthermore, the de novo algorithms can asses the stability of the folds predicted from the inverse algorithm, while the inverse folding algorithms can assess the quality of the de novo models. Thus, the synergism of the de novo and inverse folding algorthhm approaches provides a set of complementary tools that will facilitate further progress on the protein-folding problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shaw, W.V., Biochem. J., 246 (1987) 1.

    CAS  Google Scholar 

  2. Martin, Y.C., Methods Enzymol., 203 (1991) 587.

    CAS  Google Scholar 

  3. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., MeyerJr., E.F., Brice, J.R., Rodgers, J.R., Kennard, O., Simanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    CAS  Google Scholar 

  4. PDB, Quarterly Newsletter, No. 61, June 1992.

  5. Bowie, J.U., Luethy, R. and Eisenberg, D., Science, 253 (1991) 164.

    CAS  Google Scholar 

  6. Godzik, A. and Skolnick, J., Proc. Natl. Acad. Sci. U.S.A., 89 (1992) 12098.

    CAS  Google Scholar 

  7. Godzik, A., Kolinski, A. and Skolnick, J., J. Mol. Biol., 227 (1992) 227.

    Article  CAS  Google Scholar 

  8. Sippl, M.J. and Weitckus, S., Proteins, 13 (1992) 258.

    Article  CAS  Google Scholar 

  9. Bryant, S.H. and Lawrence, C.E., Proteins, 16 (1993) 92.

    Article  CAS  Google Scholar 

  10. Jones, D.T., Taylor, W.R. and Thorton, J.M., Nature, 358 (1992) 86.

    Article  CAS  Google Scholar 

  11. Maiorov, V.N. and Crippen, G.M., J. Mol. Biol., 277 (1992) 876.

    Google Scholar 

  12. Skolnick, J., Kolinski, A., BrooksIII, C.L., Godzik, A. and Rey, A., Curr. Biol., 3 (1993) 414.

    Article  CAS  Google Scholar 

  13. Kolinski, A., Godzik, A. and Skolnick, J., J. Chem. Phys., 98 (1993) 7420.

    Article  CAS  Google Scholar 

  14. Karplus, M. and Petsko, G.A., Nature, 347 (1990) 631.

    Article  CAS  Google Scholar 

  15. Novotny, J., Bruccoleri, T. and Karplus, M., J. Mol. Biol., 177 (1984) 787.

    CAS  Google Scholar 

  16. Jernigan, R.L., Curr. Opin. Struct. Biol., 2 (1992) 248.

    Article  CAS  Google Scholar 

  17. Gregoret, L.M. and Cohen, F.E., J. Mol. Biol., 219 (1991) 109.

    Article  CAS  Google Scholar 

  18. Kuntz, I.D., Crippen, G.M., Kollman, P.A. and Kimelman, D., J. Mol. Biol., 106 (1976) 983.

    Article  CAS  Google Scholar 

  19. Wilson, C. and Doniach, S., Protein Struct. Funct. Genet., 6 (1989) 193.

    CAS  Google Scholar 

  20. Gregoret, L.M. and Cohen, F.E., J. Mol. Biol., 211 (1990) 959.

    Article  CAS  Google Scholar 

  21. Godzik, A., Skolnick, J. and Kolinski, A., Proc. Natl. Acad. Sci. U.S.A., 89 (1992) 2629.

    CAS  Google Scholar 

  22. Godzik, A., Kolinski, A. and Skolnick, J., J. Comput. Chem., 1993, in press.

  23. Clementi, E., Computational Aspects for Large Molecular Systems, Lecture Notes in Chemistry, Vol. 19, Springer, Berlin, 1980.

    Google Scholar 

  24. Cornette, J.L., Cease, K.B., Margalit, H., Sponge, J.L., Berzowski, J.A. and DeLisi, C., J. Mol. Biol., 195 (1987) 659.

    Article  CAS  Google Scholar 

  25. Warme, P.K. and Morgan, R.S.J., J. Mol. Biol., 118 (1978) 289.

    CAS  Google Scholar 

  26. Narayama, S.V. and Argos, P., Int. J. Pept. Protein Res., 24 (1984) 25.

    Google Scholar 

  27. Miyazawa, S. and Jernigan, R., Macromolecules, 18 (1985) 534.

    Article  CAS  Google Scholar 

  28. Singh, J. and Thorton, J.M., J. Mol. Biol., 211 (1990) 595.

    Article  CAS  Google Scholar 

  29. Rooman, M.J. and Wodak, S.J., Nature, 335 (1988) 45.

    Article  CAS  Google Scholar 

  30. Bryant, S.H. and Lawrence, C.E., Proteins, 9 (1991) 108.

    Article  CAS  Google Scholar 

  31. Shakhnovich, E.I. and Finkelstein, A.V., Biopolymers, 28 (1989) 1667.

    Article  CAS  Google Scholar 

  32. Christensen, H. and Pain, R.H., Eur. Biophys. J., 19 (1991) 221.

    Article  CAS  Google Scholar 

  33. Skolnick, J. and Kolinski, A., Annu. Rev. Phys. Chem., 40 (1989) 207.

    CAS  Google Scholar 

  34. Skolnick, J., Kolinski, A. and Sikorski, A., Chem. Des. Autom. News, 5 (1990) 1.

    Google Scholar 

  35. Skolnick, J., Kolinski, A. and Sikorski, A., Comm. Mol. Cell. Biol., 6 (1990) 223.

    Google Scholar 

  36. Hinds, D.A. and Levitt, M., Proc. Natl. Acad. Sci. U.S.A., 89 (1992) 2539.

    Google Scholar 

  37. Skolnick, J., Kolinski, A. and Yaris, R., Biopolymers, 28 (1989) 1059.

    Article  CAS  Google Scholar 

  38. Skolnick, J. and Kolinski, A., J. Mol. Biol., 221 (1991) 499.

    Article  CAS  Google Scholar 

  39. Lau, K.F. and Dill, K.A., Macromolecules, 22 (1989) 3986.

    Article  CAS  Google Scholar 

  40. Kendrew, J.C., Bodo, G., Dintiz, H.M., Parrish, R.G., Wyckoff, H. and Phillips, D.C., Nature, 181 (1958) 662.

    CAS  Google Scholar 

  41. Waterman, M.S., Bull. Math. Biol., 46 (1984) 473.

    CAS  Google Scholar 

  42. Perutz, M.F., Kendrew, J.C. and Watson, H.C., J. Mol. Biol., 13 (1965) 669.

    CAS  Google Scholar 

  43. Pastore, A. and Lesk, A.M., Proteins, 8 (1990) 133.

    Article  CAS  Google Scholar 

  44. Lim, V.I., Biofizika, 19 (1974) 562.

    CAS  Google Scholar 

  45. Chou, P.Y. and Fasman, G.D., Biochemistry, 13 (1974) 211.

    CAS  Google Scholar 

  46. Fasman, G.D. (Ed.) Prediction of Protein Structure and the Principles of Protein Conformation, Plenum Press, New York, 1989.

    Google Scholar 

  47. Lesk, A.M. and Chothia, C., J. Mol. Biol., 136 (1980) 225

    Article  CAS  Google Scholar 

  48. Bashford, D., Chothia, C. and Lesk, A.M., J. Mol. Biol., 196 (1987) 199.

    Article  CAS  Google Scholar 

  49. Lesk, A.M. and Chothia, C., J. Mol. Biol., 160 (1982) 325.

    Article  CAS  Google Scholar 

  50. Chothia, C. and Lesk, A.M., J. Mol. Biol., 160 (1982) 309.

    Article  CAS  Google Scholar 

  51. Gribskov, M., McLachlan, M. and Eisenberg, D.P., Proc. Natl. Acad. Sci. U.S.A., 84 (1987) 4355.

    CAS  Google Scholar 

  52. Altschul, S.F. and Lipman, D.J., Proc. Natl. Acad. Sci. U.S.A., 87 (1990) 5509.

    CAS  Google Scholar 

  53. Martinez, H.M., Nucleic Acids Res., 16 (1988) 1683.

    CAS  Google Scholar 

  54. Barton, G.J. and Sternberg, M.J.E., J. Mol. Biol., 198 (1987) 327.

    Article  CAS  Google Scholar 

  55. Subbiah, S. and Harrison, S.C., J. Mol. Biol., 209 (1989) 539.

    Article  CAS  Google Scholar 

  56. Vingron, M. and Argos, P., CABIOS, 5 (1989) 115.

    CAS  Google Scholar 

  57. Taylor, W.R., J. Mol. Biol., 188 (1987) 233.

    Google Scholar 

  58. Godzik, A. and Sander, C., Protein Eng., 2 (1989) 589.

    CAS  Google Scholar 

  59. Pascarella, S. and Argos, P., Protein Eng., 5 (1992) 121.

    CAS  Google Scholar 

  60. Argos, P., J. Mol. Biol., 197 (1987) 331.

    Article  CAS  Google Scholar 

  61. Kidera, A., Konishi, Y., Oka, M., Ooi, T. and Scheraga, H.A., J. Protein Chem., 4 (1985) 23.

    CAS  Google Scholar 

  62. Nakai, K., Kidera, A. and Kanehisa, M., Protein Eng., 2 (1988) 93.

    CAS  Google Scholar 

  63. Sali, A. and Blundell, T.L., J. Mol. Biol., 212 (1990) 403.

    CAS  Google Scholar 

  64. Bowie, J.U., Clarke, N.D., Pabo, C.O. and Sauer, R.T., Proteins, 7 (1990) 257.

    Article  CAS  Google Scholar 

  65. Luethy, R., McLachlan, A.D. and Eisenberg, D., Proteins, 10 (1991) 229.

    Google Scholar 

  66. Ponder, J.W. and Richards, F.M., J. Mol. Biol., 193 (1987) 775.

    Article  CAS  Google Scholar 

  67. Correa, P.A., Proteins, 7 (1990) 366.

    Article  CAS  Google Scholar 

  68. Reid, L.S. and Thornton, J.M., Proteins, 5 (1989) 170.

    Article  CAS  Google Scholar 

  69. Holm, L. and Sander, C., J. Mol. Biol., 218 (1991) 183.

    Article  CAS  Google Scholar 

  70. Finkelstein, A.V. and Reva, B.A., Biofizika, 35 (1991) 402.

    Google Scholar 

  71. Finkelstein, A.V. and Reva, B.A., Nature, 351 (1991) 497.

    Article  CAS  Google Scholar 

  72. Daopin, S., Albert, T., Baase, W.A., Wozniak, J.A. and Matthews, B.W., J. Mol. Biol., 221 (1991) 873.

    Article  Google Scholar 

  73. EMBL, Protein Sequence Database, Vol. 15, EMBL Data Library, Heidelberg, Germany, 1992.

    Google Scholar 

  74. Needelman, S.B. and Wunsch, C.D., J. Mol. Biol., 48 (1970) 443.

    Google Scholar 

  75. Guss, J.M. and Freeman, H.C., J. Mol. Biol., 169 (1983) 521.

    CAS  Google Scholar 

  76. Baker, E.N., J. Mol. Biol., 203 (1988) 1071.

    Article  CAS  Google Scholar 

  77. Adman, E.T., In Harrison, P.M. (Ed.) Metalloproteins, Part I, Macmillan, London, 1985, pp. 1–42.

    Google Scholar 

  78. Thornton, J.M., Flores, T.P., Jones, D.T. and Swindells, M.B., Nature, 354 (1991) 105.

    Article  CAS  Google Scholar 

  79. Finkelstein, A.V. and Ptitsyn, O.B., Prog. Biophys. Mol. Biol., 50 (1987) 171.

    CAS  Google Scholar 

  80. Benner, S.A. and Gerloff, D., Adv. Enz. Regul., 31 (1991) 121.

    CAS  Google Scholar 

  81. Chirgadze, Y.N., Acta Crystallogr., A43 (1987) 405.

    Article  Google Scholar 

  82. Luger, K., Szadkowski, H. and Kirschner, K., Protein Eng., 3 (1990) 249.

    CAS  Google Scholar 

  83. Kabsch, W. and Sander, C., Biopolymers, 22 (1983) 2577.

    Article  CAS  Google Scholar 

  84. Levitt, M. and Warshel, A., Nature, 253 (1975) 694.

    Article  CAS  Google Scholar 

  85. Levitt, M., J. Mol. Biol., 104 (1976) 59.

    Article  CAS  Google Scholar 

  86. Hagler, A.T. and Honig, B., Proc. Natl. Acad. Sci. U.S.A., 75 (1978) 554.

    CAS  Google Scholar 

  87. Ycas, M., J. Protein Chem., 9 (1990) 177.

    CAS  Google Scholar 

  88. Go, N., Abe, H., Mizuno, H. and Taketomi, H., In Jaenicke, N. (Ed.) Protein Folding, Elsevier, Amsterdam, 1980, pp. 167–181.

    Google Scholar 

  89. Go, N. and Taketomi, H., Proc. Natl. Acad. Sci. U.S.A., 75 (1978) 559.

    CAS  Google Scholar 

  90. Abe, H., Biopolymers, 20 (1981) 1013.

    Article  CAS  Google Scholar 

  91. Ueda, Y., Taketomi, H. and Go, N., Biopolymers, 17 (1978) 1531.

    Article  CAS  Google Scholar 

  92. Krigbaum, W.R. and Lin, S.F., Macromolecules, 15 (1982) 1135.

    CAS  Google Scholar 

  93. Dashevskii, V.G., Molekulyarnaya Biologia (Translat.), 14 (1980) 105.

    CAS  Google Scholar 

  94. Meirovitch, H., Vasquez, M. and Scheraga, H.A., Biopolymers, 26 (1987) 651.

    Article  CAS  Google Scholar 

  95. Meirovitch, H., J. Chem. Phys., 89 (1988) 2514.

    Article  CAS  Google Scholar 

  96. Covell, D. and Jernigan, R.L., Biochemistry, 29 (1990) 3287.

    Article  CAS  Google Scholar 

  97. Shakhnovich, E. and Gutin, A., J. Chem. Phys., 93 (1990) 5967.

    Article  CAS  Google Scholar 

  98. Shakhnovich, E., Farztdinov, G. and Gutin, A.M., Phys. Rev. Lett., 67 (1991) 1665.

    Article  CAS  Google Scholar 

  99. Chan, H.S. and Dill, K.A., Annu. Rev. Biophys. Biophys. Chem., 20 (1991) 447.

    Article  CAS  Google Scholar 

  100. Chan, H.S. and Dill, K.A., Macromolecules, 22 (1989) 4559.

    Article  CAS  Google Scholar 

  101. Kolinski, A. and Skolnick, J., J. Chem. Phys., 97 (1992) 9412.

    Article  CAS  Google Scholar 

  102. Kolinski, A., Skolnick, J. and Yaris, R., J. Chem. Phys., 85 (1986) 3585.

    Article  CAS  Google Scholar 

  103. Kolinski, A., Skolnick, J. and Yaris, R., Biopolymers, 26 (1987) 937.

    Article  CAS  Google Scholar 

  104. Skolnick, J., Kolinski, A. and Yaris, R.m Proc. Natl. Acad. Sci. U.S.A., 85 (1988) 5057.

    CAS  Google Scholar 

  105. Sikorski, A. and Skolnick, J., Biopolymers, 28 (1989) 1097.

    Article  CAS  Google Scholar 

  106. Sikorski, A. and Skolnick, J., Proc. Natl. Acad. Sci. U.S.A., 86 (1989) 2668.

    CAS  Google Scholar 

  107. Sikorski, A. and Skolnick, J., J. Mol. Biol., 215 (1990) 183.

    CAS  Google Scholar 

  108. Skolnick, J., Kolinski, A. and Yaris, R., Proc. Natl. Acad. Sci. U.S.A., 86 (1989) 1229.

    CAS  Google Scholar 

  109. Skolnick, J. and Kolinski, A., J. Mol. Biol., 212 (1990) 787.

    Article  CAS  Google Scholar 

  110. Kolinski, A., Milik, M. and Skolnick, J., J. Chem. Phys., 94 (1991) 3978.

    Article  CAS  Google Scholar 

  111. Skolnick, J. and Kolinski, A., Science, 250 (1990) 1121.

    CAS  Google Scholar 

  112. Kuwajima, W., Proteins, 6 (1989) 87.

    Article  CAS  Google Scholar 

  113. Ptitsyn, O.B., Pain, R.H., Semisotnov, G.V., Zerovnik, E. and Razgulyaev, O.I., FEBS Lett., 262 (1990) 20.

    Article  CAS  Google Scholar 

  114. Levinthal, C., J. Chem. Phys., 65 (1968) 44.

    Google Scholar 

  115. Levitt, M., Curr. Opin. Struct. Biol., 1 (1991) 224.

    Article  CAS  Google Scholar 

  116. Dyson, H.J., Merutka, G., Waltho, J.P., Lerner, R.A. and Wright, P.E., J. Mol. Biol., 226 (1990) 795.

    Google Scholar 

  117. Matthews, C.R., In Gierasch, L.M. and King, J. (Eds.) Protein Folding, AAAS, Washington, 1990, p. 191.

    Google Scholar 

  118. Baumgartner, A., Annu. Rev. Phys. Chem., 35 (1984) 419.

    Article  Google Scholar 

  119. Skolnick, J. and Kolinski, A., Adv. Chem. Phys., 77 (1990) 223.

    Google Scholar 

  120. Rey, A. and Skolnick, J., Chem. Phys., 158 (1991) 199.

    Article  CAS  Google Scholar 

  121. Honeycutt, J.D. and Thirumalai, D., Proc. Natl. Acad. Sci. U.S.A., 87 (1990) 3526.

    CAS  Google Scholar 

  122. Binder, K., In Binder, K. (Ed.) Monte Carlo Methods in Statistical Physics, Springer, Berlin, 1986, p. 411.

    Google Scholar 

  123. Poland, K. and Scheraga, H.A., Theory of Helix-Coil Transitions in Biopolymers, Academic Press, New York, 1970.

    Google Scholar 

  124. Handel, T. and DeGrado, W.F., Biophys. J., 61 (1992) A265.

  125. Raleigh, D.P. and DeGrado, W.F., J. Am. Chem. Soc., 114 (1992) 10079.

    Article  CAS  Google Scholar 

  126. Rey, A. and Skolnick, J., J. Comput. Chem., 13 (1992) 443.

    Article  CAS  Google Scholar 

  127. Hecht, M.H., Richardson, J.S., Richardson, D.C. and Ogden, R.C., Science, 249 (1990) 884.

    CAS  Google Scholar 

  128. Sander, C. (Ed.) Protein Design Exercises, Vol. 1, EMBL, Heidelberg, 1986.

    Google Scholar 

  129. Covell, D.G. and Jernigan, R.L., Biochemistry, 29 (1990) 3287.

    Article  CAS  Google Scholar 

  130. Milik, M. and Skolnick, J., Proc. Natl. Acad. Sci. U.S.A., 89 (1992) 9391.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godzik, A., Kolinski, A. & Skolnick, J. De novo and inverse folding predictions of protein structure and dynamics. J Computer-Aided Mol Des 7, 397–438 (1993). https://doi.org/10.1007/BF02337559

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02337559

Key words

Navigation