Skip to main content
Log in

Influence of time of gene microinjection on development and DNA detection frequency in bovine embryos

  • Papers
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The effect of DNA microinjection at various times afterin vitro insemination on DNA detection and survival rates of bovine embryos was investigated. Oocytes were inseminated 24 h after maturation with frozen/thawed semen prepared with a Percoll separation procedure. At 11, 15 and 19 h after insemination, embryos were centrifuged to visualize pronuclei and microinjected with a murine whey acidic protein-human protein C genomic DNA construct. After culture for 7 days on Buffalo Rat Liver cells, embryos were assessed for stage of development and assayed for the presence of the transgene by polymerase chain reaction. Of zygotes in the 11h after insemination treatment, 16% (25/152) of non-injected and 7% (11/161) of injected embryos developed to the morula or blastocyst stage. Comparable development of non-injected and injected embryos treated at 15h after insemination was 15% (23/158) and 4% (6/159) and treated at 19 h after insemination was 14% (23/162) and 1% (1/165), respectively. Development of injected embryos was greater (p<0.05) when injection was performed at 11 h after insemination compared to 19 h after insemination. Development of non-injected embryos was greater (p<0.01) than that of injected embryos. There was no difference in transgene detection frequency in embryos of all developmental states between treatments (53% at 11; 50% at 15; 48% at 19h after insemination). Injected embryos testing positive for the presence of the transgene exhibited increased development over negative embryos (p<0.01). Greater development efficiencies can be obtained in microinjected bovine embryos when injection is performed early in pronuclear formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bavister, B.D. and Yanagimachi, R. (1977) The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoain vitro.Biol. Reprod. 16, 228–37.

    Article  CAS  PubMed  Google Scholar 

  • Bedford, J.M. (1982) Fertilization. In: Austin, C.R. and Short, R.V. eds,Reproduction in Mammals 1: Germ cells and Fertilization, p. 156. Cambridge, UK: Cambridge University Press. pp. 128–63.

    Google Scholar 

  • Bialy, H. (1991) Transgenic pharming comes of age.Bio/Technology 9, 786.

    Google Scholar 

  • Bishop, J.O. and Smith, P. (1989) Mechanism of chromosomal integration of microinjected DNA.Mol. Biol. Med. 6, 283–98.

    CAS  PubMed  Google Scholar 

  • Bondioli, K.R., Biery, K.A., Hill, K.G., Jones, K.B. and DeMayo, F.J. (1988) Production of transgenic cattle by pronuclear injection. In: First, N.L., and Haseltine, F.P. eds,Transgenic Animals pp. 265–273. Boston: Butterworth-Heinemann.

    Google Scholar 

  • Brinster, R.L., Chen, H.Y., Trumbauer, M.E., Yagle, M.K. and Palmiter, R.D. (1985) Factors affecting the efficiency of introducing foreign DNA into mice by microinjecting eggs.Proc. Natl Acad. Sci. USA 82, 4438–42.

    CAS  PubMed  Google Scholar 

  • Browder, L.W., Erickson, C.A. and Jeffery, W.R. (Eds) (1991) Fertilization: the activation of development. In:Developmental Biology, 3rd Edition p. 142. Orlando, FL: Holt, Reinhart and Winston, Inc.

    Google Scholar 

  • Burdon, T.G. and Wall, R.J. (1992) Fate of microinjected genes in preimplantation mouse embryos.Mol. Reprod. Dev. 33, 436–42.

    Article  CAS  PubMed  Google Scholar 

  • Canseco, R.S., Sparks, A.E.T., Page, R.L., Russell, C.G., Johnson, J.L., Velander, W.H., Pearson, R.E., Drohan, W.N. and Gwazdauskas, F.C. (1994) Gene transfer efficiency during gestation and the influence of co-transfer of non-manipulated embryos on production of transgenic mice.Transgenic Res. 3, 20–25.

    Article  CAS  PubMed  Google Scholar 

  • Eyestone, W.H., Leibfried-Rutledge, M.L., Northey, D.L., Gilligan, B.G. and First, N.L. (1987) Culture of one and two cell bovine embryos to the blastocyst stage in the ovine oviduct.Theriogenology 28, 1–7.

    Article  Google Scholar 

  • Gagne, M., Pothier, F. and Sirard, M.A. (1990) Developmental potential of early bovine zygotes submitted to centrifugation and microinjection followingin vitro maturation of oocytes.Theriogenology 34, 417–25.

    Article  Google Scholar 

  • Gordon, K., Lee, E., Vitale, S.A., Smith, A.E., Westphal, H. and Henninghausen, L. (1987) Production of human tissue plasminogen activator in transgenic mouse milk. Bio/Technology5, 1183–7.

    Article  CAS  Google Scholar 

  • Hill, K.G., Curry, J., DeMayo, F.J., Jones-Diller, K., Slapak, J.R. and Bondioli, K.R. (1992) Production of transgenic cattle by pronuclear injection.Theriogenology 37, 222.

    CAS  Google Scholar 

  • Jänne, J., Hyttinen, J.-M., Peura, T., Tolvanen, M., Alhohen, L. and Halmekytö, M. (1992) Transgenic animals as bioproducers of therapeutic proteins.Ann. Med. 24, 273–80.

    PubMed  Google Scholar 

  • Krimpenfort, P., Rademakers, A., Eyestone, W., van der Schans, A.S., van den Broek, S., Kooiman, P., Kootwijk, E., Platenburg, G., Pieper, F., Strijker, R. and de Boer, H. (1991) Generation of transgenic dairy cattle usingin vitro embryo production. Bio/Technology9, 844–7.

    Article  CAS  PubMed  Google Scholar 

  • Lewis-Williams, J., Houseal, T., Harvey, M., DiTullio, P. and Ziomek, C. (1993) Selection of preimplantation mouse embryos using fluorescencein situ hybridization.Theriogenology 39, 258.

    Google Scholar 

  • McLaren, A. (1992) The embryo. In: Austin, C.R. and Short, R.V. eds,Reproduction in Mammals 2: Embryonic and Fetal Development, p 3. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mermillod, P., Wils, C., Massip, A. and Dessy, F. (1992) Collection of oocytes and production of blastocystsin vitro from individual, slaughtered cows.J. Reprod. Fertil. 96, 717–23.

    CAS  PubMed  Google Scholar 

  • Powell, D.J., Galli, C. and Moor, R.M. (1992) The fate of DNA injected into mammalian oocytes and zygotes at different stages of the cell cycle.J. Reprod. Fertil. 95, 211–20.

    CAS  PubMed  Google Scholar 

  • Saeki, K., Kato, H., Hosoi, Y., Miyake, M., Utsumi, K. and Iritani, I. (1991) Early morphological events inin vitro fertilized bovine oocytes with frozen thawed spermatozoa.Theriogenology 35, 1051–8.

    Article  Google Scholar 

  • Saiki, R.K., Walsh, P.S., Levenson, C.H. and Ehrlich, H.A. (1989) Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes.Proc. Natl. Acad. Sci. USA 86, 6230–4.

    CAS  PubMed  Google Scholar 

  • SAS Institute, Inc. (1985) SAS User's Guide: Statistics. Cary, NC, USA.

  • Simons, J., McClenaghan, M. and Clark, A. (1987) Alteration of the quality of milk expression of β-lactoglobulin in transgenic mice.Nature 328, 530–2.

    CAS  PubMed  Google Scholar 

  • Thomas, W.K., Schnieke, A. and Seidel, G.E., Jr. (1993) Methods for producing transgenic bovine embryos fromin vitro matured and fertilized oocytes.Theriogenology 40, 679–88.

    Google Scholar 

  • Velander, W.H., Johnson, J.L., Page, R.L., Russell, C.G., Subramanian, A., Wilkins, T.D., Gwazdauskas, F.C., Pittius, C. and Drohan, W.N. (1992) High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C.Proc. Natl Acad. Sci. USA 89, 12003–7.

    CAS  PubMed  Google Scholar 

  • Voelkel, S.A. and Hu, Y.X. (1992) Effect of gas atmosphere on the development of one-cell bovine embryos in two culture systems.Theriogenology 37, 1117–31.

    CAS  Google Scholar 

  • Wall, R.J., Pursel, V.G., Shamay, A., McKnight, R.A., Pittius, C.W. and Hennighausen, L. (1991) High-level synthesis of a heterologous milk protein in the mammary glands of transgenic swine.Proc. Natl Acad. Sci. USA 88, 1696–700.

    CAS  PubMed  Google Scholar 

  • Watson, J.D., Tooze, J. and Kurtz, D.T. (1983) The introduction of foreign genes into fertilized mouse eggs. In: Recombinant DNA; a Short Course, p. 210. New York, Scientific American Books.

    Google Scholar 

  • Whitelaw, C.B.A., Springbett, A.J., Webster, J. and Clark, J. (1993) The majority of G0 transgenic mice are derived from mosaic embryos.Transgenic Res. 2, 29–32.

    Article  CAS  PubMed  Google Scholar 

  • Williams, B.L., Sparks, A.E.T., Canseco, R.S., Knight, J.W., Johnson, J.L., Velander, W.H., Page, R.L., Drohan, W.N., Young, J.M., Pearson, R.E., Wilkins, T.D. and Gwazdauskas, F.C. (1992)In vitro development of zygotes from prepubertal gilts after microinjection of DNA.J. Anim. Sci. 70, 2207–11.

    CAS  PubMed  Google Scholar 

  • Wilmut, I., Hooper, M.L. and Simons, J.P. (1991) Genetic manipulation of mammals and its application in reproductive biology.J. Reprod. Fertil. 92, 245–79.

    CAS  PubMed  Google Scholar 

  • Xu, K.P. and Greve, T.A. (1988) A detailed analysis of early events during in vitro fertilization of bovine follicular oocytes.J. Reprod. Fertil. 82, 127–34.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krisher, R.L., Gibbons, J.R., Canseco, R.S. et al. Influence of time of gene microinjection on development and DNA detection frequency in bovine embryos. Transgenic Research 3, 226–231 (1994). https://doi.org/10.1007/BF02336775

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02336775

Keywords

Navigation