Skip to main content
Log in

Targeting microtubule-associated proteins in glioblastoma: A new strategy for selective therapy

  • Original Articles
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background: This report presents a summary of preclinical data concerning the use of estramustine, an antimicrotubule agent against human glioblastoma cells. The strategy for the investigation of estramustine is predicated on the unique affinity of this agent for microtubule-associated proteins (MAPs).

Methods: A series of laboratory investigations were used to demonstrate antiproliferative effects (MTT assay, colony forming assay, thymidine incorporation), cell cycle synchronization (flow cytometry), intracellular localization of binding sites (immunocytochemistry, electron microscopy), and activity in subcutaneous xenografts of human glioblastoma.

Results: Estramustine has potent in vitro activity against human glioblastoma cells and can enhance the cytotoxic effects of ionizing radiation. Estramustine-binding protein was abundantly expressed in glioblastoma cells and may contribute to the selective effects of estramustine on neoplastic cells. This agent has activity against subcutaneous xenografts of human glioblastoma. Synthesized novel estrogen carbamates also can inhibit proliferation of glioblastoma cells.

Conclusions: Cytoskeletal elements (MAPs) of glioblastoma cells may provide a useful target for therapy with agents like estramustine because of the potent antimitotic effects of this agent and its affinity to a protein that is expressed in glioma cells. These observations have stimulated a search for other estrone carbamates with antimitotic activity that exceeds more conventional antimicrotubule agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salcman M. Epidemiology and factors affecting survival. In: Apuzzo M, ed.Malignant cerebral gliomas. Park Ridge, Illinois: AANS Pub., 1990:95–110.

    Google Scholar 

  2. Hochberg F, Pruitt A. Assumptions in the radiotherapy of glioblastoma.Neurology 1980;30:907–11.

    CAS  PubMed  Google Scholar 

  3. McComb R, Burger P. Pathologic analysis of primary brain tumors. In:Neurologic clinics. Philadelphia: WB Saunders, 1985.

    Google Scholar 

  4. Daumas-Duport C, Scheithauer B, Kelley P. A histologic and cytologic method for the spatial definition of gliomas.Mayo Clin Proc 1987;62:435–59.

    CAS  PubMed  Google Scholar 

  5. Levin V. Chemotherapy of primary brain tumors. In:Neurologic clinics. Philadelphia: WB Saunders, 1985:855–66.

    Google Scholar 

  6. Schold C, Brent T, von Hoff E, Friedman H, Mitra S, Bigner D, Swenberg J, Klieihues P. O6-alkylguanine-DNA alkyltransferase and sensitivity to procarbazine in human malignant brain tumor xenografts.J Neurosurg 1989;70:573–7.

    PubMed  Google Scholar 

  7. Chang C, Horton J, Schoenfeld D, Salazer O, Perez-Tamayo R, Kramer S, Weinstein A, et al. Comparison of postoperative radiotherapy and combined postoperative radiotherapy and chemotherapy in the multidisciplinary management of malignant gliomas: a joint Radiation Therapy Oncology Group and Eastern Cooperative Oncology Group study.Cancer 1983;52:997–1007.

    CAS  PubMed  Google Scholar 

  8. Tew K, Glusker J, Hartley-Asp B, Hudes G, Speicher L. Preclinical and clinical perspectives on the use of estramustine as an antimitotic drug.Pharmacol Ther 1992;56:323–39.

    Article  CAS  PubMed  Google Scholar 

  9. Forsgren B, Bjork P. Specific binding of estramustine to prostatic proteins.J Urology 1984;23:34–8.

    CAS  Google Scholar 

  10. Stearns M, Jenkins D, Tew M. Dansylated estramustine, a fluorescent probe for studies of uptake and identification of intracellular targets.PNAS 1985;82:8483–7.

    CAS  PubMed  Google Scholar 

  11. Tew KD, Hartley-Asp B. Cytotoxic properties of estramustine unrelated to alkylating and steroid constituents.J Urol 1984;23:28–33.

    CAS  Google Scholar 

  12. Tew KD, Stearns ME. Hormone-independent, non-alkylating mechanism of cytotoxicity for estramustine.Urol Res 1987;15:155–60.

    Article  CAS  PubMed  Google Scholar 

  13. Fex H, Hogberg B, Konyves I. Estramustine phosphate—historical review.J Urol 1984;23:4–5.

    CAS  Google Scholar 

  14. Tew KD. The mechanism of action of estramustine.Semin Oncol 1983;10:21–6.

    CAS  PubMed  Google Scholar 

  15. Friden B, Wallin M, Deinum J, Prasad V, Luduena R. Effect of estramustine phosphate on the assembly of trypsin-treated microtubules and microtubules reconstituted from purified tubulin with either tau, MAP2 or the tubulin-binding fragment of MAP2.Arch Biochem Biophys 1987;257:123–30.

    Article  CAS  PubMed  Google Scholar 

  16. Kanje M, Deinum J, Wallin M, Ekstrom P, Edstrom A, Hartley-Asp B. Effect of estramustine phosphate on the assembly of isolated bovine brain microtubules and fast axon transport in the frog sciatic nerve.Cancer Res 1985;45:2234–9.

    CAS  PubMed  Google Scholar 

  17. Stearns ME, Tew KD. Estramustine binds to MAP-2 to inhibit microtubule assembly in vitro.J Cell Sci 1988;89:331–42.

    CAS  PubMed  Google Scholar 

  18. von Schoultz E, Lundblad D, Bergh J, Grankvist K, Hendriksson R. Estramustine binding protein and anti-proliferative effect of estramustine in human glioma cell lines.Br J Cancer 1988;58:326–9.

    Google Scholar 

  19. von Schoultz E, Gunnarsson P, Henriksson R. Uptake, metabolism and antiproliferative effect of estramustine phosphate in human glioma cell lines.Anticancer Res 1989;9:1713–6.

    Google Scholar 

  20. Piepmeier J, Keefe D, Weinstein M, Yoshida D, Zielinski J, Lin T, Chen Z, et al. Estramustine and related analogs rapidly and reversibly inhibit DNA synthesis and alter morphology in human glioblastoma cells.Neurosurgery 1993;32:422–31.

    CAS  PubMed  Google Scholar 

  21. Bergenheim A, Gunnarsson P, Edman K, von Schultz E, Hariz M, Henriksson R. Uptake and retention of estramustine and the presence of estramustine binding protein in malignant brain tumors in humans.Br J Cancer 1993;67:358–61.

    CAS  PubMed  Google Scholar 

  22. Yoshida D, Cornell-Bell A, Piepmeier J. Selective antimitotic effects of estramustine correlates with its antimicrotubule properties on glioblastoma and astrocytes.Neurosurgery 1994;34:863–8.

    CAS  PubMed  Google Scholar 

  23. Hartley-Asp B. Estramustine-induced mitotic arrest in two human prostatic carcinoma cell lines DU 145 and PC-3.Prostate 1984;5:93–100.

    CAS  PubMed  Google Scholar 

  24. Yoshida D, Piepmeier J, Weinstein M. Estramustine sensitizes human glioblastoma cells to irradiation.Cancer Res 1994;54:1415–7.

    CAS  PubMed  Google Scholar 

  25. von Schultz E, Bergenheim T, Grankvist K, Henriksson R. Estramustine binding protein in human brain tumor tissue.J Neurosurg 1991;74:962–4.

    Google Scholar 

  26. Forsgren B, Bjork P, Carlstrom K, Gustafsson J, Pousette A, Hogberg B. Purification and distribution of a major protein in rat prostate that binds estramustine, a nitrogen mustard derivative of estradiol-17β.PNAS 1979;76:3149–53.

    CAS  PubMed  Google Scholar 

  27. Suprenant K, Tempero L, Hammer L. Association of ribosomes with in vitro assembled microtubules.Cell Motil Cytoskeleton 1989;14:401–15.

    Article  CAS  PubMed  Google Scholar 

  28. Suprenant K. Microtubules, ribosomes and RNA: evidence for cytoplasmic localization and translational regulation.Cell Motil Cytoskeleton 1993;25:1–9.

    Article  CAS  PubMed  Google Scholar 

  29. Loomis P, Howard T, Castleberry R, Binder L. Identification of nuclear tau isoforms in human neuroblastoma cells.PNAS 1990;87:8422–6.

    CAS  PubMed  Google Scholar 

  30. Walker P, Whitfield J. Cytoplasmic microtubules are essential for the formation of membrane-bound polyribosomes.J Biol Chem 1985;260:765–70.

    CAS  PubMed  Google Scholar 

  31. Schold C, Friedman H, Bigner D. Therapeutic profile of the human glioma line D-54 MG in athymic mice.Cancer Treat Rep 1987;71:849–50.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piepmeier, J.M., Pedersen, P.E., Yoshida, D. et al. Targeting microtubule-associated proteins in glioblastoma: A new strategy for selective therapy. Annals of Surgical Oncology 3, 543–549 (1996). https://doi.org/10.1007/BF02306087

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02306087

Key Words

Navigation