Skip to main content
Log in

Gleaning in the field of dual scaling

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

Some historical background and preliminary technical information are first presented, and then a number of hidden, but important, methodological aspects of dual scaling are illustrated and discussed: normed versus projected weights, the amount of information accounted for by each solution, a perfect solution to the problem of multidimensional unfolding, multidimensional quantification space, graphical display, number-of-option problems, option standardization versus item standardization, and asymmetry of symmetric (dual) scaling. Contrary to the common perception that dual scaling and similar quantification methods are now mathematically transparent, the present study demonstrates how much more needs to be clarified for routine use of the method to arrive at valid conclusions. Data analysis must be carried out in such a way that common sense, intuition and sound logic will prevail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn (Im), H. (1991).Effects of missing responses in multiple-choice data on dual scaling results. Unpublished doctoral dissertation, The University of Toronto.

  • Andrews, D. F. (1972). Plots of high dimensional data.Biometrics, 28, 125–136.

    Google Scholar 

  • Benzécri, J.-P. (1992).Correspondence analysis handbook. New York: Marcel-Dekker.

    Google Scholar 

  • Benzécri, J.-P. et al. (1973).L'Analyse des Données: II. L'Analyse des Correspondances [Data analysis: II. Correspondence analysis]. Paris: Dunod.

    Google Scholar 

  • Beltrami, E. (1873). Sulle funzioni bilineari [On the bilinear functions]. In G. Battagline & E. Fergola (Eds.),Giornale di Mathematiche, 11, 98–106.

    Google Scholar 

  • Bock, R. D. (1956). The selection of judges for preference testing.Psychometrika, 21, 349–366.

    Google Scholar 

  • Bock, R. D. (1960). Methods and applications of optimal scaling.The University of North Carolina Psychometric Laboratory Research Memorandum, No. 25.

  • Bouroche, J.-M., & Saporta, G. (1980).L'Analyse des Données [Data analysis]. Paris: Que-Sais-Je?

    Google Scholar 

  • Bradu, D., & Gabriel, K. R. (1978). The biplot as a diagnostic tool for models of two-way tables.Technometrics, 20, 47–68.

    Google Scholar 

  • Cailliez, F., & Pagès, (1976).Introduction a l'Analyse des Données [Introduction to data analysis]. Paris: SMASH.

    Google Scholar 

  • Carroll, J. D. (1972). Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and applications in the behavioral sciences (Vol. 1). New York: Seminar Press.

    Google Scholar 

  • Carroll, J. D., Green, P. E., & Schaffer, C. M. (1986). Interpoint distance comparisons in correspondence analysis.Journal of Marketing Research, 23, 271–280.

    Google Scholar 

  • Carroll, J. D., Green, P. E., & Schaffer, C. M. (1987). Comparing interpoint distances in correspondence analysis: A clarification.Journal of Marketing Research, 24, 445–450.

    Google Scholar 

  • Carroll, J. D., Green, P. E., & Schaffer, C. M. (1989). Reply to Greenacre's commentary on the Carroll-Green-Schaffer scaling of two-way correspondence analysis solutions.Journal of Marketing Research, 26, 3366–368.

    Google Scholar 

  • Chan, D. (1978).Treatment of missing data by optimal scaling. Unpublished Master of Arts thesis, University of Toronto.

  • Choulakian, V. (1988). Exploratory analysis of contingency tables by loglinear formulation and generalizations of correspondence analysis.Psychometrika, 53, 235–250.

    Google Scholar 

  • Coombs, C. H. (1950). Psychological scaling without a unit of measurement.Psychological Review, 57, 148–158.

    Google Scholar 

  • Coombs, C. H. (1964).A theory of data. New York: Wiley.

    Google Scholar 

  • Coombs, C. H., & Kao, R. C. (1960). On a connection between factor analysis and multidimensional unfolding.Psychometrika, 25, 219–231.

    Google Scholar 

  • Cox, T. F., & Cox, M. A. A. (1994).Multidimensional scaling. London: Chapman & Hall.

    Google Scholar 

  • de Leeuw, J. (1973, 1984).Canonical analysis of categorical data. Leiden: DSWO Press.

    Google Scholar 

  • de Leeuw, J., Young, F. W., & Takane, Y. (1976). Additive structure in qualitative data: An alternating least squares method with optimal scaling features.Psychometrika, 41, 471–504.

    Google Scholar 

  • Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank.Psychometrika, 1, 211–218.

    Google Scholar 

  • Escofier, B., & Pagès, J. (1988).Analyse Factorielles Simples et Multiples: Objectifs, Méthodes et Interprétation [Simple and multiple factorial analysis: Objectives, methods and interpretation]. Paris: Dunod.

    Google Scholar 

  • Fisher, R. A. (1940). The precision of discriminant functions.Annals of Eugenics, 10, 422–429.

    Google Scholar 

  • Franke, G. R. (1985). Evaluating measures through data quantification: Applying dual scaling to an advertising copytest.Journal of Business Research, 13, 61–69.

    Google Scholar 

  • Gabriel, K. R. (1971). The biplot graphical display of matrices with applications to principal component analysis.Biometrika, 58, 453–457.

    Google Scholar 

  • Gifi, A. (1990).Nonlinear multivariate analysis. New York: Wiley.

    Google Scholar 

  • Gold, E. M. (1973). Metric unfolding: Data requirements for unique solution and clarification of Schönemann's algorithm.Psychometrika, 38, 555–569.

    Google Scholar 

  • Good, I. J. (1969). Some applications of the singular decomposition of a matrix.Technometrics, 11, 823–831.

    Google Scholar 

  • Goodman, L. A. (1985). Correspondence analysis models, log-linear models, and log-bilinear models for the analysis of contingency tables.Bulletin of the International Statistical Institute, 51 (Book 4, 28), 1, 1–14.

    Google Scholar 

  • Goodman, L. A. (1986). Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables.International Statistical Review, 54, 243–270.

    Google Scholar 

  • Gower, J. C., & Hand, D. J. (1996).Biplots. London: Chapman & Hall.

    Google Scholar 

  • Greenacre, M. J. (1984).Theory and applications of correspondence analysis. London: Academic Press.

    Google Scholar 

  • Greenacre, M. J. (1989). The Carroll-Green-Schaffer scaling in correspondence analysis: A theoretical and empirical approach.Journal of Marketing Research, 26, 358–365.

    Google Scholar 

  • Greenacre, M. J. (1993).Correspondence analysis in practice. London: Academic Press.

    Google Scholar 

  • Greenacre, M. J., & Blasius, J. (Eds.). (1994).Correspondence analysis in the social sciences. London: Academic Press.

    Google Scholar 

  • Greenacre, M. J., & Browne, M. W. (1986). An efficient alternating lease-squares algorithm to perform multidimensional unfolding.Psychometrika, 51, 241–250.

    Google Scholar 

  • Guttman, L. (1941). The quantification of a class of attributes: A theory and method of scale construction. In The Committee on Social Adjustment (Ed.),The prediction of personal adjustment (pp. 319–348). New York: Social Science Research Council.

    Google Scholar 

  • Guttman, L. (1946). An approach for quantifying paired comparisons and rank order.Annals of Mathematical Statistics, 17, 144–163.

    Google Scholar 

  • Guttman, L. (1950). The basis for scalogram analysis. In S. A. Stouffer, et al. (Eds.),Measurement and prediction. Princeton: Princeton University Press.

    Google Scholar 

  • Hayashi, C. (1950). On the quantification of qualitative data from the mathematico-statistical point of view.Annals of the Institute of Statistical Mathematics, 2, 35–47.

    Google Scholar 

  • Healy, M. J. R., & Goldstein, H. (1976). An approach to the scaling of categorized attributes.Biometrika, 63, 219–229.

    Google Scholar 

  • Heiser, W. J. (1981). Unfolding analysis of proximity data. Unpublished doctoral dissertation, Leiden University, The Netherlands.

    Google Scholar 

  • Heiser, W. J. (1987). Correspondence analysis with least absolute residuals.Computational Statistics and Data Analysis, 5, 337–356.

    Google Scholar 

  • Heiser, W. J. (1989). Order invariant unfolding analysis under smoothness restrictions. In G. DeSoete, H. Feger, & K. C. Klauer (Eds.)New developments in psychological choice modeling (pp. 3–31). Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Heuer, J. (1979).Selbsmord bei Kindern und Jugendlichen (Suicide by children and youths). Stuttgart, Germany: Ernst Klett Verlag.

    Google Scholar 

  • Hill, M. O. (1973). Reciprocal averaging: An eigenvector method of ordination.Journal of Ecology, 61, 237–249.

    Google Scholar 

  • Hill, M. O. (1974). Correspondence analysis: A neglected multivariate method.Applied Statistics, 23, 340–354.

    Google Scholar 

  • Hirschfeld, H. O. (1935). A connection between correlation and contingency.Cambridge Philosophical Society Proceedings, 31, 520–524.

    Google Scholar 

  • Hoffman, D. L., & Franke, G. R. (1986). Correspondence analysis: Graphical representation of categorical data in marketing research.Journal of Marketing Research, 23, 213–217.

    Google Scholar 

  • Hojo, H. (1994). A new method for multidimensional unfolding.Behaviormetrika, 21, 131–147.

    Google Scholar 

  • Horn, R. A., & Johnson, C. R. (1991).Topics in matrix analysis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Horn, R. A., & Olkin, I. (1996). When does A*A=B*B, and why does one want to know?Americal Mathematical Monthly, 104, 470–482.

    Google Scholar 

  • Horst, P. (1935). Measuring complex attitudes.Journal of Social Psychology, 6, 369–374.

    Google Scholar 

  • Horst, P. (1963).Matrix algebra for social scientists. New York: Holt, Rinehart and Winston.

    Google Scholar 

  • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components.Journal of Educational Psychology, 24, 417–441, 498–520.

    Google Scholar 

  • Hubert, L., & Arabie, P. (1992). Correspondence analysis and optimal structural representations.Psychometrika, 57, 119–140.

    Google Scholar 

  • Ihm, P., & van Groenewoud, H. (1984). Correspondence analysis and Gaussian ordination.Compstat Lectures, 3, 5–60.

    Google Scholar 

  • Inukai, Y. (1972).Optimal versus partially optimal scaling of polychotomous items. Unpublished master's thesis, University of Toronto.

  • Israëls, A. (1987).Eigenvalue techniques for qualitative data. Leiden: DSWO Press.

    Google Scholar 

  • Iwatsubo, S. (1987).Suryoka no kiso [Foundations of quantification method]. Tokyo: Asakura Shoten.

    Google Scholar 

  • Jambu, M. (1989).Exploration informatique et statistique des données [Informational and statistical exploration of data]. Paris: Dunod.

    Google Scholar 

  • Jordan, C. (1874). Mémoire sur les formes bilinieares [Note on bilinear forms].Journal de Mathématiques Pures et Appliquées, Deuxiéme Série, 19, 35–54.

    Google Scholar 

  • Kalantari, B., Lari, I., Rizzi, A., & Simeone, B. (1993). Sharp bounds for the maximum of the chi-square index in a class of contingency tables with given marginals.Computational Statistics & Data Analysis, 16, 19–34.

    Google Scholar 

  • Kiers, H. A. L. (1989).Three-way methods for the analysis of qualitative and quantitative two-way data. Leiden: DSWO Press.

    Google Scholar 

  • Komazawa, T. (1978).Tagenteki data bunseki no kiso [Foundations for multiway data analysis]. Tokyo: Asakura Shoten.

    Google Scholar 

  • Komazawa, T. (1982).Suryoka riron to data shori [Quantification theory and data processing]. Tokyo: Asakura Shoten.

    Google Scholar 

  • Koster, J. T. A. (1989).Mathematical aspects of multiple correspondence analysis. Leiden: DSWO Press.

    Google Scholar 

  • Lancaster, H. O. (1958). The structure of bivariate distributions.Annals of Mathematical Statistics, 29, 719–736.

    Google Scholar 

  • Lauro, N., & D'Ambra, L. (1984). L'analyse nonsymmetrique des correspondances [Nonsymmetric correspondence analysis]. In E. Diday, M. Jambu, L. Lebart, J. Pagès, & R. Tomassone (Eds.),Data analysis and informatics (Vol. 3, pp. 433–446). Amsterdam: Elsevier Science Publisher.

    Google Scholar 

  • Lebart, L., Morineau, A., & Fénelon, J.-P. (1979).Traitement des données statistiques [Processing of statistical data]. Paris: Dunod.

    Google Scholar 

  • Lebart, L., Morineau, A., & Tabard, N. (1977).Techniques de la description statistique [Methods of statistical description]. Paris: Dunod.

    Google Scholar 

  • Lebart, L., Morineau, A., & Warwick, K. M. (1984).Multivariate descriptive statistical analysis. New York: Wiley.

    Google Scholar 

  • Marshall, A. W., & Olkin, I. (1979).Inequalities: Theory of majorization and its applications. New York: Academic Press.

    Google Scholar 

  • Maung, K. (1941). Measurement of association in contingency tables with special reference to the pigmentation of hair and eye colours of Scottish children.Annals of Eugenics, 11, 189–23.

    Google Scholar 

  • McDonald, R. P. (1968). A unified treatment of the weighting problem.Psychometrika, 33, 351–381.

    Google Scholar 

  • McDonald, R. P. (1983). Alternative weights and invariant parameters in optimal scaling.Psychometrika, 48, 377–391.

    Google Scholar 

  • Meulman, J. J. (1982).Homogeneity analysis of incomplete data. Leiden: DSWO Press.

    Google Scholar 

  • Meulman, J. J. (1986).Distance approach to multivariate analysis. Leiden: DSWO Press.

    Google Scholar 

  • Mosier, C. I. (1946). Machine methods in scaling by reciprocal averages.Proceedings, Research Forum (pp. 35–39). Endicath, NY: International Business Corporation.

    Google Scholar 

  • Nishisato, S. (1975).Oyo shinri shakudo ho: shitsuteki data no bunseki to kaishaku [Applied psychological scaling: Analysis and interpretation of qualitative data]. Tokyo: Seishin Shobo.

    Google Scholar 

  • Nishisato, S. (1978). Optimal scaling of paired comparison and rank-order data: An alternative to Guttman's formulation.Psychometrika, 43, 263–271.

    Google Scholar 

  • Nishisato, S. (1980).Analysis of categorical data: Dual scaling and its applications. Toronto: University of Toronto Press.

    Google Scholar 

  • Nishisato, S. (1982).Shitsuteki data no suryoka [Quantification of qualitative Data]. Tokyo: Asakura Shoten.

    Google Scholar 

  • Nishisato, S. (1984a). Forced classification: A simple application of a quantification method.Psychometrika, 49, 25–36.

    Google Scholar 

  • Nishisato, S. (1984b). Dual scaling of reciprocal medians.Proceedings of the 32nd Scientific Conference of the Italian Statistical Society (pp. 141–147). Sorrento, Italy: Societa Italiana di Statistica.

    Google Scholar 

  • Nishisato, S. (1986a).Quantification of categorical data: A bibliography 1075–1986. Toronto: MicroStats.

    Google Scholar 

  • Nishisato, S. (1986b). Generalized forced classification for quantifying categorical data. In E. Diday, Y. Escoufier, L. Lebart, J. Pages, Y. Schektman & R. Tomassone (Eds.),Data analysis and informatics, IV. Amsterdam: North-Holland, 351–362.

    Google Scholar 

  • Nishisato, S. (1987). Robust techniques for quantifying categorical data. In I. BN. MacNeil & G. J. Umphrey (Eds.),Foundations of statistical inference (pp. 209–217). Dordrecht: D. Reidel Publishing.

    Google Scholar 

  • Nishisato, S. (1988a). Assessing the quality of joint graphical display in correspondence analysis and dual scaling. In E. Diday, Y. Escoufier, L. Lebart, J. Pages, Y. Schektman & R. Tomassone (Eds.),Data analysis and informatics, V (pp. 409–416). Amsterdam: North-Holland.

    Google Scholar 

  • Nishisato, S. (1988b). Forced classification procedure of dual scaling: Its mathematical properties. In H. H. Bock (Ed.),Classification and related methods of data analysis (pp. 523–532). Amsterdam: North-Holland.

    Google Scholar 

  • Nishisato, S. (1990). Dual scaling of designed experiments. In M. Schader & W. Gaul (Eds.),Knowledge, data and computer-assisted decisions (pp. 115–125). Berlin: Springer-Verlag.

    Google Scholar 

  • Nishisato, S. (1991). Standardizing multidimensional space for dual scaling.Proceedings of the 20th Annual Meeting of the German Operations Research Society, 584–591.

  • Nishisato, S. (1993). On quantifying different types of categorical data.Psychometrika, 58, 617–629.

    Google Scholar 

  • Nishisato, S. (1994).Elements of dual scaling: An introduction to practical data analysis. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Nishisato, S. (1996). Review of M. J. Greenacre & J. Blasius (Eds.), Correspondence analysis in the social sciences. 1994, London: Academic Press.Psychometrika, 61, 181–186.

    Google Scholar 

  • Nishisato, S. (in press). An interpretable graph for dual scaling of multiple-choice data. In M. J. Greenacre & J. Blasius (Eds.),Visualization of categorical data.

  • Nishisato, S., & Ahn (IM), H. (1994). When not to analyze data: Decision making on missing responses in dual scaling.Annals of operations research, 55, 361–378.

    Google Scholar 

  • Nishisato, S., & Nishisato, I. (1984).An introduction to dual scaling. Toronto: MicroStats.

    Google Scholar 

  • Nishisato, S., & Nishisato, I. (1994).Dual scaling in a nutshell. Toronto: MicroStats.

    Google Scholar 

  • Nishisato, S., & Sheu, W. J. (1984). A note on dual scaling of successive categories data.Psychometrika, 49, 493–500.

    Google Scholar 

  • Nishisato, S., & Yamauchi, H. (1974). Principal components of deviation scores and standards scores.Japanese Psychological Research, 16, 162–170.

    Google Scholar 

  • Novak, T. P., & Hoffman, D. L. (1990). Residual scaling: An alternative to correspondence analysis for the graphical representation of residuals from log-linear models.Multivariate Behavioral Research, 25, 351–370.

    Google Scholar 

  • Ohsumi, N., Lebart, L., Morineau, A., Warwick, K. M., & Baba, Y. (1994).Multivariate descriptive statistical analysis. Tokyo: Nikka Giren. (in Japanese)

    Google Scholar 

  • Okamoto, Y. (1995). Unfolding by the criterion of the fourth quantification method.Journal of Behviormetrics, 22, 126–134. (in Japanese with English abstract)

    Google Scholar 

  • Pearson, K. (1901). On lines and planes of closest fit to systems of points in space.Philosophical Magazine and Journal of Science, Series 6,2, 559–572.

    Google Scholar 

  • Richardson, M., & Kuder, G. F. (1933). Making a rating scale that measures.Personnel Journal, 12, 36–40.

    Google Scholar 

  • Rouanet, H., & Le Roux, B. (1993).Analyse des données multidimensionnelles [Multidimensional data analysis]. Paris: Dunod.

    Google Scholar 

  • Sachs, J. (1994). Robust dual scaling with Tukey's biweight.Applied Psychological Measurement, 18, 301–309.

    Google Scholar 

  • Saito, T. (1980).Tajigenshakudo kouseiho [Multidimensional scaling]. Tokyo: Asakura Shoten.

    Google Scholar 

  • Saito, T., & Otsu, T. (1988). A method of optimal scaling for multivariate ordinal data and its extension.Psychometrika, 53, 5–25.

    Google Scholar 

  • Saporta, G. (1990).Probabilités, analyse des données et statistique [Probabilities, data analysis and statistics]. Paris: Technip.

    Google Scholar 

  • Schmidt, E. (1907). Zür Theorie der linearen und nichtlinearen Integralgleichungen. Erster Teil. Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener [On theory of linear and nonlinear integral equations. Part one. Development of arbitrary functions according to prescribed systems].Mathematische Annalen, 63, 433–476.

    Google Scholar 

  • Schönemann, P. H. (1970). On metric multidimensional unfolding.Psychometrika, 35, 167–176.

    Google Scholar 

  • Schönemann, P. H., & Wang, M. M. (1972). An individual difference model for the multidimensional analysis of preference data.Psychometrika, 37, 275–309.

    Google Scholar 

  • Stewart, G. W. (1973).An introduction to matrix computations. New York: Academic Press.

    Google Scholar 

  • Stewart, G. W. (1993). On the early history of the singular value decomposition.SLAM Review, 35, 551–566.

    Google Scholar 

  • Takane, Y. (1980a). Analysis of categorizing behavior.Bahaviormetrika, 8, 75–86.

    Google Scholar 

  • Takane, Y. (1980b).Tajigen shakudoho [Multidimensional scaling]. Tokyo: University of Tokyo Press.

    Google Scholar 

  • Takane, Y. (1995).Seiyakutsuki shuseibun bunseki-ho [Principal component analysis with constraints]. Tokyo: Asakura Shoten. (in Japanese)

    Google Scholar 

  • Takane, Y., & Shibayama, T. (1991). Principal component analysis with external information on both subjects and variables.Psychometrika, 56, 97–120.

    Google Scholar 

  • Takane, Y., Yanai, H., & Mayekawa, S. (1991). Relationships among several methods of linearly constrained correspondence analysis.Psychometrika, 56, 667–684.

    Google Scholar 

  • Takeuchi, K., Yanai, H., & Mukherjee, B. N. (1982).The foundations of multivariate analysis: A unified approach by means of projection onto linear subspaces. New Delhi: Wiley Eastern.

    Google Scholar 

  • Tenenhaus, M. (1988). Canonical analysis of two convex polyhedral cones and applications.Psychometrika, 53, 503–524.

    Google Scholar 

  • Tenenhaus, M. (1994).Méthodes statistiques in gestion [Statistical methods in business]. Paris: Dunod.

    Google Scholar 

  • Tenenhaus, M., & Young, F. W. (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying multivariate categorical data.Psychometrika, 50, 91–119.

    Google Scholar 

  • ter Braak, C. F. (1986). Canonical correspondence analysis: A new eigenvector technique for multivariate direct gradient analysis.Ecology, 67, 1167–1179.

    Google Scholar 

  • Torgerson, W. S. (1958).Theory and methods of scaling. New York: Wiley.

    Google Scholar 

  • van Buuren, S. (1990).Optimal scaling of time series. Leiden: DSWO Press.

    Google Scholar 

  • van Buuren, S., & van Rijckevorsel, J. L. A. (1992). Imputation of missing categorical data by maximizing internal consistency.Psychometrika, 57, 567–580.

    Google Scholar 

  • van der Heijden, P. G. M. (1987).Correspondence analysis of longitudinal categorical data. Leiden: DSWO Press.

    Google Scholar 

  • van Rijckevorsel, J. L. A. (1987).The application of fuzzy coding and horseshoe in multiple correspondence analysis. Leiden: DSWO Press.

    Google Scholar 

  • van Rijckevorsel, J. L. A., & de Leeuw, J. (Eds.). (1988).Component and correspondence analysis. New York: Wiley.

    Google Scholar 

  • Verboon, P. (1994).A robust approach to nonlinear multivariate analysis. Leiden: DSWO Press.

    Google Scholar 

  • Weller, S. C., & Romney, A. K. (1988).Metric scaling: Correspondence analysis. Newbury Park, CA: Sage.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizuhiko Nishisato.

Additional information

Presidential Address delivered at the Annual Meeting of the Psychometric Society, Banff Centre for Conferences, Banff, Alberta, Canada, June 27–30, 1996. The work has been supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada. I am grateful to Ira Nishisato for his comments, Ingram Olkin and Yoshio Takane for important references, and Liqun Xu for computational help.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishisato, S. Gleaning in the field of dual scaling. Psychometrika 61, 559–599 (1996). https://doi.org/10.1007/BF02294038

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02294038

Key words

Navigation