Skip to main content
Log in

Ultrastructural view of central catecholaminergic transmission: immunocytochemical localization of synthesizing enzymes, transporters and receptors

  • Published:
Journal of Neurocytology

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Abercrombie, E. D. &Zigmond, M. J. (1990) Striatal dopamine release:in vivo evidence for local initiation.Annals of the New York Academy of Sciences 604, 575–8.

    Google Scholar 

  • Adams, J. C. &Mugnaini, E. (1990) Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior olive.Hearing Research 49, 281–98.

    Google Scholar 

  • Aicher, S. A., Kurucz, O. S., Reis, D. J. &Milner, T. A. (1995) Nucleus tractus solitarius efferent terminals synapse on neurons in the caudal ventrolateral medulla that project to the rostral ventrolateral medulla.Brain Research 693, 51–63.

    Google Scholar 

  • Andersen, S. L. &Gazzara, R. A. (1994) The development of D2 autoreceptor-mediated modulation of K+-evoked dopamine release in the neostriatum.Developmental Brain Research 78, 123–30.

    Google Scholar 

  • Aoki, C. (1992) β-adrenergic receptors: astrocytic localization in the adult visual cortex and their relation to catecholamine axon terminals as revealed by electron microscopic immunocytochemistry.Journal of Neuroscience 12, 781–92.

    Google Scholar 

  • Aoki, C. &Pickel, V. M. (1992a) Ultrastructural relations between β-adrenergic receptors and catecholaminergic neurons.Brain Research Bulletin 29, 257–63.

    Google Scholar 

  • Aoki, C. &Pickel, V. M. (1992b) C-Terminal tail of β-adrenergic receptors: immunocytochemical localization within astrocytes and their relation to catecholamineric neurons in N. tractus solitarii and area postrema.Brain Research 571, 35–49.

    Google Scholar 

  • Aoki, C., Joh, T. H. &Pickel, V. M. (1987) Ultrastructural localization of β-adrenergic receptor-like immunoreactivity in the cortex and neostriatum of rat brain.Brain Research 437, 264–82.

    Google Scholar 

  • Aoki, C., Zemcik, B. A., Strader, C. D. &Pickel, V. M. (1989) Cytoplasmic loop of beta-adrenergic receptors: synaptic and intracellular localization and relation to catecholaminergic neurons in the nuclei of the solitary tracts.Brain Research 493, 331–47.

    Google Scholar 

  • Aoki, C., Go, C.-G., Venkatesan, C. &Kurose, H. (1994) Perikaryal and synaptic localization of α2A-adrenergic receptor-like immunoreactivity.Brain Research 650, 181–204.

    Google Scholar 

  • Arluison, M., Martres, M. P. &Sokoloff P. (1983) High-resolution radioautographic study of dopamine binding sites in the rat neostriatum using3H-domperidone.Journal of Neural Transmission Supplementum 18, 9–24.

    Google Scholar 

  • Armstrong, D. M., Pickel, V. M., Joh, T. H., Reis, D. J. &Miller, R. J. (1981) Immunocytochemical localization of catecholamine synthesizing enzymes and neuropeptides tides in area postrema and medial nucleus tractus solitarius of rat brain.Journal of Comparative Neurology 196, 505–17.

    Google Scholar 

  • Bahouth, S. W., Wang, H. &Malborn, C. C. (1991) Immunological approaches for probing receptor structure and function.Trends in pharmacological Sciences 12, 338–43.

    Google Scholar 

  • Beaudet, A. &Descarries, L. (1978) The monoamine innervation of rat cerebral cortex: synaptic and nonsynaptic axon terminals.Neuroscience 3, 851–60.

    Google Scholar 

  • Bhaskaran, D. &Freed, C. R. (1987) Nucleus tractus solitarius: an evaluation byin vivo voltammetry.Life Sciences 41, 323–31.

    Google Scholar 

  • Björklund, A. &Lindvall, O. (1975) Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals.Brain Research 83, 531–7.

    Google Scholar 

  • Björklund, A. &Lindvall, O. (1984) Dopaminecontaining systems in the CNS. InHandbook of Chemical Neuroanatomy. Vol. 2 Classical Transmitters in the CNS, Part 1. (edited byBjörklund, A. &Hökfelt, T.) pp. 55–121. Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • Blanchard, V., Raisman-Vozari, R., Vyas, S., Michel, P. P., Javoy-Agid, F., Uhl, G. &Agid, Y. (1994) Differential expression of tyrosine hydroxylase and membrane dopamine transporter genes in subpopulations of dopaminergic neurons of the rat mesencephalon.Molecular Brain Research 22, 29–38.

    Google Scholar 

  • Bloom, F. E. (1991) An integrative view of information handling in the CNS. InVolume Transmission in the Brain: Novel Mechanisms for Neural Transmission (edited byFuxe, K. &Agnati, L. F.) pp. 11–23. New York: Raven Press, Ltd.

    Google Scholar 

  • Carlin, R. K., Grab, D. J., Cohen, R. S. &Siekevitz, P. (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities.Journal of Cell Biology 86, 831–2.

    Google Scholar 

  • Castro, S. L., Sved, A. F. &Zigmond, M. J. (1996) Increased neostriatal tyrosine hydroxylation during stress: role of extracellular dopamine and excitatory amino acids.Journal of Neurochemistry 66, 824–33.

    Google Scholar 

  • Cerruti, C., Drian, M. J., Kamenka, J. M. &Privat, A. (1991) Localization of dopamine carriers by BTCP, a dopamine uptake inhibitor, on nigral cells culturedin vitro.Brain Research 555, 51–7.

    Google Scholar 

  • Cerruti, C., Walther, D. M., Kuhar, M. I. &Uhl, G. R. (1993) Dopamine transporter mRNA expression is intense in rat midbrain neurons and modest outside midbrain.Molecular Brain Research 18, 181–6.

    Google Scholar 

  • Cheramy A., Leviel V. &Glowinski, J. (1981) Dendritic release of dopamine in the substantia nigra.Nature 289, 537–42.

    Google Scholar 

  • Chiba, T. (1973) Electron microscopic and histochemical studies on the synaptic vesicles in mouse vas deferens and atrium after 5-hydroxydopamine administration.Anatomical Record 175, 35–48.

    Google Scholar 

  • Ciliax, B. J., Heilman, C., Demchyshyn, L. L., Pristupa, Z. B., Ince, E., Hersch, S. M., Niznik, H. B. &Levey, A. I. (1995) The dopamine transporter: Immunocytochemical characterization and localization in brain.Journal of Neuroscience 15, 1714–23.

    Google Scholar 

  • Civelli, O., Bunzow, J. R. &Grandy, D. K. (1993) Molecular diversity of the dopamine receptors.Annual Reviews of Pharmacology and Toxicology 33, 281–307.

    Google Scholar 

  • Colonnier, M. (1968) Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study.Brain Research 9, 268–87.

    Google Scholar 

  • Cuello, A. C. &Iversen, L. L. (1978) Interactions of dopamine with other neurotransmitters in the rat substantia nigra: a possible functional role of dendritic dopamine. InInteractions Between Putative Neurotransmitters in the Brain (edited byGarattini, S., Pujol, J. F. &Samanin, R.), pp. 127–49. New York: Raven Press, Ltd.

    Google Scholar 

  • Delle Donne, K. T., Sesack, S. R. &Pickel, V. M. (1996) Ultrastructural immunocytochemical localization of neurotensin and the dopamine D2 receptor in the rat nucleus accumbens.Journal of Comparative Neurology,371, 552–66.

    Google Scholar 

  • De Robertis, E. &Pelligrino De Iraldi, A. (1961) Plurivesicular secretory processes and nerve endings in the pineal gland of the rat.Journal of Biophysical and Biochemical Cytology 10, 361–72.

    Google Scholar 

  • Descarries, L. &Beaudet, A. (1983) The use of radioautography for investigating transmitter-specific neurons. InHandbook of Chemical Neuroanatomy: Vol 1: Methods in Chemical Neuroanatomy (edited byBjörklund, A. &Hökfelt, T.) pp. 286–364. Amsterdam: Elsevier.

    Google Scholar 

  • Descarries, L., Watkins, K. C. &Lapierre, Y. (1977) Noradrenergic axon terminals in the cerebral cortex of rat III: topometric ultrastructural analysis.Brain Research 133, 197–222.

    Google Scholar 

  • Descarries, L., Bosler, O., Berthelet, F. &Des Rosiers, M. H. (1980) Dopaminergic nerve endings visualised by high-resolution autoradiography in adult rat neostriatum.Nature 284, 620–2.

    Google Scholar 

  • Descarries, L., Lemay, B., Doucet, G. &Berger, B. (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex.Neuroscience 21, 807–24.

    Google Scholar 

  • Descarries, L., Seguela, P. &Watkins, K. C. (1991) Non-junctional relationships of monoamine axon terminals in the cerebral cortex of the adult rat. InVolume Transmission in the Brain: Novel Mechanisms for Neural Transmission (edited byFuxe, K. &Agnati, L. F.) pp 53–62. New York: Raven Press, Ltd.

    Google Scholar 

  • Difiglia, M. &Rafols, J. A. (1988) Synaptic organization of the globus pallidus.Journal of Electron Microscopic Technique 10, 247–63.

    Google Scholar 

  • Dixon, R. A. F., Sigal, I. S., Irving, S., Rands, E., Register, R. B., Candelor, M. R., Blake, A. S. &Strader, C. D. (1987) Ligand binding to the beta-adrenergic receptor involves its rhodopsin-like core.Nature 326, 73–7.

    Google Scholar 

  • Doucet, G., Descarries, L. &Garcia, S. (1986) Quantification of the dopamine innervation in adult rat neostriatum.Neuroscience 19, 427–45.

    Google Scholar 

  • Edwards, R. H. (1992) The transport of neurotransmitters into synaptic vesicles.Current Opinion in Neurobiology 2, 586–94.

    Google Scholar 

  • Elverfors, A. &Nissbrandt, H. (1991) Reserpineinsensitive dopamine release in the substantia nigra?Brain Research 557, 5–12.

    Google Scholar 

  • Ennis, M. &Aston-Jones, G. (1987) Two physiologically distinct populations of neurons in the ventrolateral medulla innervate the locus coeruleus.Brain Research 425, 275–82.

    Google Scholar 

  • Erickson, J. D., Eiden, L. &Hoffman, B. (1992) Expression cloning of a reserpine-sensitive vesicular monoamine transporter.Proceedings of the National Academy of Sciences (USA) 89, 10993–7.

    Google Scholar 

  • Erickson, J. D., Schafer, M. K. H., Bonner, T. I., Eiden, L. E. &Weihe, E. (1996) Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter.Proceedings of the National Academy of Sciences, (USA) 93, 5166–71.

    Google Scholar 

  • Fallon, J. H. &Loughlin, S. E. (1987) Monoamine innervation of cerebral cortex and a theory of the role of monoamines in cerebral cortex and basal ganglia. InCerebral Cortex, Volume 6 (edited byJones, E. G. &Peters, A.), pp. 41–128. New York: Plenum Publishing Corporation.

    Google Scholar 

  • Farb, C., Aoki, C., Milner, T. A., Kaneko, T. &Ledoux, J. (1992) Glutamate immunoreactive terminals in the lateral amygdaloid nucleus: a possible substrate for emotional memory.Brain Research 593, 145–58.

    Google Scholar 

  • Farquar, M. G. (1985) Progress in unraveling pathways of Golgi traffic.Annual Review of Cell Biology 1, 447–8.

    Google Scholar 

  • Freed, C., Revay, R., Vaughan, R. A., Kriek, E., Grant, S., Uhl, G. R. &Kuhar, M. J. (1995) Dopamine transporter immunoreactivity in rat brain.Journal of Comparative Neurology 359, 340–9.

    Google Scholar 

  • Freund, T. F., Powell, J. F. &Smith, A. D. (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines.Neuroscience 13, 1189–215.

    Google Scholar 

  • Fuxe, K. &Agnati, L. F. (1991) Two principle modes of electrochemical communication in the brain: volume versus wiring transmission. InVolume Transmission in the Brain: Novel Mechanisms for Neural Transmission (edited byFuxe, K. &Agnati, L. F.) pp. 1–9. New York: Raven Press, Ltd.

    Google Scholar 

  • Garris, P. A., Collins, L. B., Jones, S. R. &Wightman, R. M. (1993) Evoked extracellular dopaminein vivo in the medial prefrontal cortex.Journal of Neurochemistry 61, 637–47.

    Google Scholar 

  • Garris, P. A., Ciolkowski, E. L., Pastore, P. &Wightman, R. M. (1994) Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain,Journal of Neuroscience,14, 6084–93.

    Google Scholar 

  • Gatley, S. J., Volkow, N. D., Fowler, J. S., Dewey, S. L. &Logan, J. (1995) Sensitivity of striatal [11C] cocaine binding to decreases in synaptic dopamine.Synapse 20, 137–44.

    Google Scholar 

  • Geffen, L. B., Jessell, T. M., Cuello, A. C. &Iversen, L. L. (1976a) Nigral and striatal dopamine release under sensory stimuli.Nature 269, 340–2.

    Google Scholar 

  • Geffen, L. B., Jessell, T. M., Cuello, A. C. &Iversen, L. L. (1976b) Release of dopamine from dendrites in rat substantia nigra.Nature 260, 258–60.

    Google Scholar 

  • Gerfen, C. R., Herkenham, M. &Thibault, J. (1987) The neostriatal mosaic: II. Patch- and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems.Journal of Neuroscience 7, 3915–34.

    Google Scholar 

  • Giros, B., El Mestikawy, S., Bertrand, L. &Caron, M. G. (1991) Cloning and functional characterization of a cocaine-sensitive dopamine transporter.FEBS Letters 295, 149–54.

    Google Scholar 

  • Gray, E. G. (1959) Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscopic study.Journal of Anatomy 93, 420–33.

    Google Scholar 

  • Graybiel, A. M. &Moratalla, R. (1989) Dopamine uptake sites in the striatum are distributed differentially in striosome and matrix compartments.Proceedings of the National Academy of Sciences (USA) 86, 9020–4.

    Google Scholar 

  • Grillo, M. A. (1966) Electron microscopy of sympathetic tissues.Pharmacological Reviews 18, 387–99.

    Google Scholar 

  • Groves, P. M. &Linder, J. C. (1983) Dendro-dendritic synapses in substantia nigra: descriptions based on analysis of serial sections.Experimental Brain Research 49, 209–17.

    Google Scholar 

  • Groves, P. M., Staunton, D. A., Wilson, C. J. &Young, S. J. (1979) Sites of action of amphetamine intrinsic to catecholaminergic nuclei: catecholaminergic presynaptic dendrites and axons.Progress in Neuro-Psychopharmacology 3, 315–35.

    Google Scholar 

  • Groves, P. M., Linder, J. C. &Young, S. J. (1994) 5-hydroxydopamine-labeled dopaminergic axons: threedimensional reconstructions of axons, synapses and postsynaptic targets in rat neostriatum.Neuroscience 58, 593–604.

    Google Scholar 

  • Halldin, C., Farde, L., Lundkvist, C., Ginovart, N., Nakashima, Y., Karlsson, P. &Swahn, C. G. (1996) [11C] β-CIT-FE, a radioligand for quantitation of the dopamine transporter in the living brain using positron emission tomography.Synapse 22, 386–90.

    Google Scholar 

  • Harrison, J. K., Rearson, W. R. &Lynch, K. R. (1991) Molecular characterization of alpha-1 and alpha-2 adrenoreceptors.Trends in Pharmacological Sciences 12, 62–7.

    Google Scholar 

  • Heeringa, M. J. &Abercrombie, E. D. (1995) Biochemistry of somatodendritic dopamine release in substantia nigra: anin vivo comparison with striatal dopamine release.Journal of Neurochemistry 65, 192–200.

    Google Scholar 

  • Hökfelt, T., Fuxe, K., Goldstein, M. &Johansson, O. (1974) Immunohistochemical evidence for the existence of adrenaline neurons in rat brain.Brain Research 66, 235–51.

    Google Scholar 

  • Hsu, K. S., Huang, C. C., Yang, C. H. &Gean, P. W. (1995) Presynaptic D2 dopaminergic receptors mediate inhibition of excitatory synaptic transmission in rat neostriatum.Brain Research 690, 264–8.

    Google Scholar 

  • Huang, Q., Zhou, D., Chase, K., Gusella, J. F., Aronin, N. &Difiglia, M. (1992) Immunohistochemical localization of the D1 dopamine receptor in rat brain reveals its axonal transport, pre- and postsynaptic localization, and prevalence in the basal ganglia, limbic system, and thalamic reticular nucleus.Proceedings of the National Academy of Sciences (USA) 89, 11988–92.

    Google Scholar 

  • Iravani, M. M., Muscat, R. &Kruk, Z. L. (1996) Comparison of somatodendritic and axon terminal dopamine release in the ventral tegmental area and the nucleus accumbens.Neuroscience 70, 1025–37

    Google Scholar 

  • Joh, T. H. &Ross, M. E. (1983) Preparation of catecholamine-synthesizing enzymes as immunogens for immunohistochemistry. InIBRO Handbook, Methods in Neuroscience (edited byCuello, A. C.) pp. 121–38 Chichester: Wiley.

    Google Scholar 

  • Jones, B. E. &Moore, R. Y. (1977) Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study.Brain Research,127, 23–53.

    Google Scholar 

  • Kandel, E. R., Schwartz, J. H. &Jessell, T. H. (1995)Essentials of Neural Science and Behavior.Norwalk: Appleton and Lange.

    Google Scholar 

  • Kaneko, T., Akiyama, H., Nagatsu, I. &Mizuno, N. (1990) Immunohistochemical demonstration of glutaminase in catecholaminergic and serotonergic neurons of rat brain.Brain Research 507, 151–4.

    Google Scholar 

  • Keefe, K. A., Zigmond, M. J. &Abercrombie, E. D. (1993)In vivo regulation of extracellular dopamine in the neostriatum: influence of impulse activity and local excitatory amono acids.Journal of Neural Transmission 91, 223–40.

    Google Scholar 

  • Kelly, E., Jenner, P. &Marsden, C. D. (1985) Evidence that3H-dopamine is taken up and released from non-dopaminergic nerve terminals in the rat substantia nigrain vitro.Journal of Neurochemistry,45, 137–44.

    Google Scholar 

  • Kilty, J. E., Lorang, D. &Amara, S. G. (1991) Cloning and expression of a cocaine-sensitive rat dopamine transporter.Science 254, 578–9.

    Google Scholar 

  • Kuhar, M. J., Ritz, M. C. &Boja, J. W. (1991) The dopamine hypothesis of the reinforcing properties of cocaine.Trends in Neurosciences 14, 299–302.

    Google Scholar 

  • Kurose, H., Arriza, J. L. &Lefkowitz, R. J. (1993) Characterization of alpha2-adrenergic receptor subtypespecific antibodies.Molecular Pharmacology 43, 444–50.

    Google Scholar 

  • Landis, D. M. (1988) Membrane and cytoplasmic structure at synaptic junctions in the mammalian central nervous system.Journal of Electron Microscopic Technique 10, 129–51.

    Google Scholar 

  • Lanzinger, I., Kobilanski, C. &Philippu, A. (1989) Pattern of catecholamine release in the nucleus solitarii of the cat.Naunyn-Schmiedebergs Archives of Pharmacology 339, 298–301.

    Google Scholar 

  • Leranth, C. &Pickel, V. M. (1989) Electron microscopic pre-embedding double immunostaining methods. InNeuroanatomical Tract-tracing Methods 2: Recent Progress. (edited byHeimer, L. &Zaborszky, L.) pp. 129–72. New York: Plenum Publishing Co.

    Google Scholar 

  • Levitt, P. &Moore, R. Y. (1979) Origin and organization of brainstem catecholamine innervation in the rat.Journal of Comparative Neurology,186, 505–28.

    Google Scholar 

  • Liu, Y. J., Peter, D., Roghani, A., Schuldiner, S., Privé, G. G., Eisenberg, D., Brecha, N. &Edwards, R. H. (1992) A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter.Cell 70, 539–51

    Google Scholar 

  • Liu, Y. J., Schweitzer, E. S., Nirenberg, M. J., Pickel, V. M., Evans, C. J. &Edwards, R. H. (1994) Preferential localization of a vesicular monoamine transporter to dense core vesicles in PC12 cells.Journal of Cell Biology 127, 1419–33.

    Google Scholar 

  • Llinás, R. (1979) The role of calcium in neuronal function. InThe Neurosciences: Fourth Study Program. (edited bySchmitt, F. O. &Worden, F. G.) pp. 555–71. Cambridge: MIT Press.

    Google Scholar 

  • Lorang, D., Amara, S. G. &Simerly, R. B. (1994) Cell-type-specific expression of catecholamine transporters in the rat brain.Journal of Neuroscience 14, 4903–14.

    Google Scholar 

  • Mansour, A., Meador-Woodruff, J. H., Bunzow, J. R., Civelli, O., Akil, H. &Watson, S. J. (1990) Localization of dopamine D2 receptor mRNA and D1 ad D2 receptor binding in the rat brain and pituitary: anin situ hybridization-receptor autoradiographic analysis.Journal of Neuroscience,10, 2587–600.

    Google Scholar 

  • Matteoli, M., Reetz, T. &De Camilli, P., (1991) Small synaptic vesicles and large dense-core vesicles: secretory organelles involved in two modes of neuronal signalling. InVolume Transmission in the Brain: Novel Mechanisms for Neural Transmission. (edited byFuxe, K. &Agnati, L. F.) pp. 181–93. New York: Raven Press, Ltd.

    Google Scholar 

  • Milner, T. A. (1991) Ultrastructural localization of tyrosine hydroxylase immunoreactivity in the rat diagonal band of Broca.Journal of Neuroscience Research 30, 498–511.

    Google Scholar 

  • Milner, T. A. &Bacon, C. E. (1989) Ultrastructural localization of tyrosine hydroxylase-like immunoreactivity in the rat hippocampal formation.Journal of Comparative Neurology,281, 479–95.

    Google Scholar 

  • Milner, T. A., Joh, T. H. &Pickel, V. M. (1986) Tyrosine hydroxylase in the rat parabrachial region: ultrastructural localization and extrinsic sources of immunoreactivity.Journal of Neuroscience 6, 2585–603.

    Google Scholar 

  • Milner, T. A., Morrison, S. F., Abate, C. &Reis, D. J. (1988) Phenylethanolamine N-methyltransferase containing terminals synapse directly on symmetric preganglionic neurons in the rat.Brain Research 448, 205–22.

    Google Scholar 

  • Milner, T. A., Abate, C., Reis, D. J. &Pickel, V. M. (1989) Ultrastructural localization of phenylethanolamine N-methyltransferase-like immunoreactivity in the rat locus coeruleus.Brain Research 478, 1–15.

    Google Scholar 

  • Milner, T. A., Kurucz, O. S., Veznedaroglu, E. &Pierce, J. P. (1995) Septohippocampal neurons in the rat septal complex have substantial glial coverage and receive direct contacts from noradrenergic terminals.Brain Research 670, 121–36.

    Google Scholar 

  • Monsma, F. J., Jr, McVittie, L. D., Gerfen, C. R., Mahan, L. C. &Sibley, D. R. (1989) Multiple D2 dopamine receptors produced by alternative RNA splicing.Nature 342, 926–9.

    Google Scholar 

  • Monsma, F. J., Jr., Mahan, L. C., McVittie, L. D., Gerfen, C. R. &Sibley, D. R. (1990) Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation.Proceedings of the National Academy of Sciences (USA) 87, 6723–6727.

    Google Scholar 

  • Moore, R. Y. (1982) Catecholamine neuron systems in brain.Annals of the New York Academy of Sciences,12, 321–7.

    Google Scholar 

  • Moore, R. Y. (1993) Principles of synaptic transmission.Annals of the New York Academy of Sciences 695, 1–9.

    Google Scholar 

  • Nicholas, A. P., Cuello, A. C., Goldstein, M. &Hökfelt, T. (1990) Glutamate-like immunoreactivity in medulla oblongata catecholamine/substance P neuroms.NeuroReport 1, 235–8.

    Google Scholar 

  • Nicholson, C. &Rice, M. E. (1991) Diffusion of ions and transmitters in the brain cell microenvironment. InVolume Transmission in the Brain: Novel Mechanisms for Neural Transmission (edited byFuxe, K. &Agnati, L. F.) pp. 279–94. New York: Raven Press, Ltd.

    Google Scholar 

  • Nirenberg, M. J. & Pickel, V. M. (1997) Vesicular and plasmalemmal dopamine transporters: ultrastructural localization in nigrostriatal dopaminergic neurons. InProceedings of the NATO Advanced Research Workshop on Neurotransmitter Release and Uptake. Springer-Verlag, in press.

  • Nirenberg, M. J., Liu, Y. J., Peter, D., Edwards, R. H. &Pickel, V. M. (1995) The vesicular monoamine transporter 2 is present in small synaptic vesicles and preferentially localizes to large dense core vesicles in rat solitary tract nuclei.Proceedings of the National Academy of Sciences (USA) 92, 8773–7.

    Google Scholar 

  • Nirenberg, M. J., Chan, J., Liu, Y. J., Edwards, R. H. &Pickel, V. M. (1996a) Ultrastructural localization of the vesicular monoamine transporter-2 in midbrain dopaminergic neurons: potential sites for somatodendritic storage and release of dopamine.Journal of Neuroscience 16, 4135–45.

    Google Scholar 

  • Nirenberg, M. J., Vaughan, R. A., Uhl, G. R., Kuhar, M. J. &Pickel, V. M. (1966b) The dopamine transporter is localized to dendritic and axonal plasma membranes of nigrostriatal dopaminergic neurons.Journal of Neuroscience 16, 436–47.

    Google Scholar 

  • Nirenberg, M. J., Chan, J., Liu, Y. J., Edwards, R. H. & Pickel, V. M. (1997) The vesicular monoamine transporter-2: ultrastructural localization in striatal axons and terminals,Synapse, in press.

  • Noack, H. J. &Lewis, D. A. (1989) Antibodies directed against tyrosine hydroxylase differentially recognize noradrenergic axons in monkey neocortex.Brain Research 500, 313–24.

    Google Scholar 

  • Olschowka, J. A., Molliver, M. G., Grazanna, R., Rice, F. L. &Coyle, J. T. (1981) Ultrastructural demonstration of noradrenergic synapses in the rat central nervous system by dopamine beta-hydroxylase immunocytochemistry.Journal of Histochemistry and Cytochemistry 29, 271–80.

    Google Scholar 

  • Peter, D., Liu, Y. J., Sternini, C., De Giorgio, R., Brecha, N. &Edwards, R. H. (1995) Differential expression of two vesicular monoamine transporters.Journal of Neuroscience 15, 6179–88.

    Google Scholar 

  • Peters, A., Palay, S. L. &Webster, H. De, F. eds (1991)The Fine Structure of the Nervous System: Neurons and Their Supporting Cells, Third Edition. New York: Oxford University Press.

    Google Scholar 

  • Pickel, V. M. (1986) Ultrastructure of central catecholaminergic neurons. InNeurohistochemistry: Modern Methods and Applications, Vol. 16. (edited byPanula, P., Paivarinta, H. &Soinila, S.) pp. 397–423. New York: Alan R. Liss, Inc.

    Google Scholar 

  • Pickel, V. M. &Milner, T. A. (1987) Electron microscopy of central catecholamine systems. In:Psychopharmacology: The Third Generation of Progress. (edited byMeltzer, H. Y.) pp. 49–59. New York: Raven Press, Ltd.

    Google Scholar 

  • Pickel, V. M. &Sesack, S. R. (1995) Electron microscopy of central dopamine systems. InPsychopharmacology: The Third Generation of Progress (edited byMeltzer, H. Y.) pp. 257–68. New York: Raven Press, Ltd.

    Google Scholar 

  • Pickel, V. M., Beckley, S. C., Joh, T. H. &Reis, D. J. (1981) Ultrastructural immunocytochemical localization of tyrosine hydroxylase in the neostriatum.Brain Research 225, 373–85.

    Google Scholar 

  • Pickel, V. M., Chan, J., Park, D. H., Joh, T. H. &Milner, T. A. (1986) Ultrastructural localization of phenylethanolamine N-methyltransferase in sensory and motor nuclei of the vagus nerve.Journal of Neuroscience Research 15, 439–55.

    Google Scholar 

  • Pickel, V. M., Chan, J. &Milner, T. A. (1989a) Ultrastructural basis for interactions between central opioids and catecholamines. II. Nuclei of the solitary tracts.Journal of Neuroscience 9, 2519–35.

    Google Scholar 

  • Pickel, V. M., Chan, J. &Milner, T.A. (1989b) Cellular substrates for interactions between neurons containing phenylethanolamine N-methyltransferase and GABA in the nuclei of the solitary tracts.Journal of Comparative Neurology 286, 243–59.

    Google Scholar 

  • Rall, W. (1966) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input.Journal of Neurophysiology 30, 1138–68.

    Google Scholar 

  • Revay, R., Vaughan, R., Grant, S. &Kuhar, M. J. (1996) Dopamine transporter immunohistochemistry in median eminence, amygdala, and other areas of the rat brain.Synapse 22, 93–9.

    Google Scholar 

  • Richtand, N. M., Kelsoe, J. R., Segal, D. S. &Kuczenski, R. (1995) Regional quantification of D1, D2, and D3 dopamine receptor mRNA in rat brain using a ribonuclease protection assay.Molecular Brain Research,33, 97–103.

    Google Scholar 

  • Ruggiero, D. A., Pickel, V. M., Milner, T. A., Anwar, M., Otake, K., Mtui, E. P. &Park, D. (1994) Viscerosensory processing in nucleus tractus solitarii: structural and neurochemical substrates. InNucleus of the Solitary Tract (edited byBarraco, I. R. A.) pp. 3–34. Boca Raton: CRC Press.

    Google Scholar 

  • Scherman, D. &Boschi, G. (1988) Time required for transmitter accumulation inside monoaminergic storage vesicles differs in peripheral and central nervous system.Neuroscience 27, 1029–36.

    Google Scholar 

  • Schmitt, F. O. (1984) Molecular regulators of brain function: a new view.Neuroscience 13, 991–1001.

    Google Scholar 

  • Schuldiner, S. (1994) A molecular glimpse of vesicular monoamine transporters.Journal of Neurochemistry 62, 2067–78.

    Google Scholar 

  • Seguela, P., Watkins, K. C., Geffard, M. &Descarries, L. (1990) Noradrenaline axon terminals in adult rat neocortex: an immunocytochemical analysis in serial thin sections.Neuroscience 35, 249–64.

    Google Scholar 

  • Sesack, S. R., Aoki, C. &Pickel, V. M. (1994) Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets.Journal of Neuroscience 14, 88–106.

    Google Scholar 

  • Shimada, S., Kitayama, S., Lin, C. L., Patel, A., Nanthakumar, E., Gregor, P., Kuhar, M. &Uhl, G. (1991) Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA.Science 254, 576–8.

    Google Scholar 

  • Shimada, S., Kitayama, S., Walther, D. &Uhl, G. (1992) Dopamine transporter mRNA: dense expression in ventral midbrain neurons.Molecular Brain Research 13, 359–62.

    Google Scholar 

  • Spruston, N., Jaffe, D. B. &Johnston, D. (1994) Dendritic attenuation of synaptic potentials and currents: the role of passive membrane properties.Trends in Neurosciences 17, 161–6.

    Google Scholar 

  • Starke, K. (1987) Presynaptic α-autoreceptors.Reviews of Physiology, Biochemistry, and Experimental Pharmacology 107, 73–146.

    Google Scholar 

  • Strader, C. D., Dixon, R. A. F., Cheung, A. H., Candelore, M. R., Blake, A. D. &Sigal, I. S. (1987a) Mutations that uncouple the beta-adrenergic receptor from Gs and increase agonist affinity.Journal of Biological Chemistry 262, 16439–43.

    Google Scholar 

  • Strader, C. D., Sigal, I. S., Register, R. B., Candelore, M. R., Rands, E. &Dixon, R. A. F. (1987b) Identification of residues required for ligand binding to the beta-adrenergic receptor.Proceedings of the National Academy of Sciences (USA) 84, 4384–8.

    Google Scholar 

  • Tennyson, V. M., Heikkila, R., Mytilineou, C., Cote, L. &Cohen, G. (1974) 5-hydroxydopamine ‘tagged’ neuronal boutons in rabbit neostriatum: interrelationship between vesicles and axonal membranes.Brain Research 82, 341–8.

    Google Scholar 

  • Uchizono, K. (1965) Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat.Nature 207, 642–3.

    Google Scholar 

  • Ushijima, I., Carino, M. A. &Horita, A. (1995) Involvement of D1 and D2 dopamine systems in the behavioural effects of cocaine in rats.Pharmacology, Biochemistry, and Behavior,52, 737–41.

    Google Scholar 

  • Venkatesan, C., Song, X. Z., Go, C. G., Kurose, H. &Aoki, C. (1966) Cellular and subcellular distribution of α2A-adrenergic receptors in the visual cortex of neonatal and adult rats.Journal of Comparative Neurology 365, 79–95.

    Google Scholar 

  • Wassef, M., Berod, A. &Sotelo, C. (1981) Dopaminergic dendrites in pars reticula of substantia nigra and their striatal input. Combined immunocytochemical localization of tyrosine hydroxylase and anterograde degeneration.Neuroscience 6, 2125–39.

    Google Scholar 

  • Winkler, H. (1993) The adrenal chromaffin granule: a model for large dense core vesicles of endocrine and nervous tissue.Journal of Anatomy 183, 237–52.

    Google Scholar 

  • Winkler, H., Sietzen, M. &Schober, M. (1987) The life cycle of catecholamine-storing vesicles.Annals of the New York Academy of Sciences 493, 3–19.

    Google Scholar 

  • Wu, H. J., Rozansky, D. J., Parmer, R. J., Gill, B. M. &O'Connor, D. T. (1991) Structure and function of the chromogranin A gene. Clues to evolution and tissue-specific expression.Journal of Biological Chemistry 266, 13130–4.

    Google Scholar 

  • Young, W. S., Bird, S. J. &Kuhar, M. J. (1977). Iontophoresis of methionine-enkephalin in the locus coerulus area.Brain Research 129, 366–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

25th Anniversary Issue

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pickel, V.M., Nirenberg, M.J. & Milner, T.A. Ultrastructural view of central catecholaminergic transmission: immunocytochemical localization of synthesizing enzymes, transporters and receptors. J Neurocytol 25, 843–856 (1996). https://doi.org/10.1007/BF02284846

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02284846

Keywords

Navigation