Skip to main content
Log in

Genetic analysis of cholinergic nerve terminal function in invertebrates

  • Published:
Journal of Neurocytology

Summary

Genetic analysis of nerve terminal function is proving fruitful and studies on invertebrates are making a substantial impact. In this survey, particular emphasis has been placed on cholinergic chemical synaptic transmission. The advanced genetics ofDrosophila melanogaster andCaenorhabditis elegans with their rich diversity of behavioural and biochemical mutants is providing new insights into the functions of key molecular components of synapses. A ‘space-invader’ mutant ofPeriplaneta americana permits investigations of competition between neurons during synaptogenesis and its impact on neurotransmitter release. The growing importance of theC. elegans genome as a major research resource is emphasized in this survey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfonso, A., Grudahl, K., McManus, J. R. &Rand, J. B. (1994) Cloning and characterization of the choline acetyltransferase structural gene (cha-1) fromC. elegans.The Journal of Neuroscience 14, 2290–300.

    Google Scholar 

  • Arpagaus, M., Fedon, Y., Cousin, X., Chatonnet, A., Berge, J. B., Fournier, D. &Toutant, J. P. (1994) The cDNA sequence, gene structure, andin-vitro expression oface-1, the gene encoding acetylcholinesterase of class-a in the nematodeCaenorhabditis elegans.Journal of Biological Chemistry 269, 9957–65.

    Google Scholar 

  • Bacon, J. P. &Blagburn, J. M. (1992) Ectopic sensory neurons in mutant cockroaches compete with normal cells for central targets.Development 115, 773–84.

    Google Scholar 

  • Ballivet, M., Alliod, C., Bertrand, S. &Bertrand, D. (1996) Nicotinic acetylcholine receptors in the nematodeCaenorhabditis elegans.Journal of Molecular Biology 258, 261–9.

    Google Scholar 

  • Bertrand, D., Ballivet, M., Gometz, M., Bertrand, S., Phannavong, B. &Gundelfinger, E. G. (1994) Physiological properties of neuronal nicotinic receptors reconstituted from the vertebrate β2 subunit andDrosophila α subunits.European Journal of Neuroscience 6, 869–75.

    Google Scholar 

  • Blagburn, J. M. &Sattelle, D. B. (1987a) Presynaptic depolarization mediates presynaptic inhibition at an identified mechanosensory neurone, giant interneurone synapse in the first instar cockroach,Periplaneta americana.Journal of Experimental Biology 127, 135–57.

    Google Scholar 

  • Blagburn, J. M. &Sattelle, D. B. (1987b) Calcium conductance in an identified cholinergic synaptic terminal in the central nervous system of the cockroach.Journal of Experimental Biology 129, 347–64.

    Google Scholar 

  • Blagburn, J. M., Beadle, D. J. &Sattelle, D. B. (1984) Synapses between an identified giant interneurone and a filiform hair sensory neurone in the terminal ganglion of first instar cockroaches (Periplaneta americana L.).Journal of Experimental Biology 113, 477–81.

    Google Scholar 

  • Blagburn, J. M., Beadle, D. J. &Sattelle, D. B. (1985a) Development of chemiosensitivity of an identified insect interneurone.Journal of Neuroscience 5, 1166–74.

    Google Scholar 

  • Blagburn, J. M., Beadle, D. J. &Sattelle, D. B. (1985b) Development of synapses between identified sensory neurones & giant interneurones in the cockroachPeriplaneta americana.Journal of Embryology and Experimental Morphology 86, 227–46.

    Google Scholar 

  • Breakefield, X. O. (1992) Molecular approaches to diseases of the nervous system. InAn Introduction to Molecular Neurobiology. (edited byHall, Z.) pp. 496–530. Sunderland, MA: Sinauer Associates Inc.

    Google Scholar 

  • Brenner, S. (1974) The genetics ofCaenorhabditis elegans.Genetics 77, 71–94.

    Google Scholar 

  • Broadie, K., Bellen, H. J., Diantonio, A., Littleton, J. T. &Schwarz, T. L. (1994) Absence of synaptotagmin disrupts excitation-secretion coupling during synaptic transmission.Proceedings of the National Academy of Sciences (USA) 91, 10727–31.

    Google Scholar 

  • Broadie, K., Prokop, A., Bellen, H. J., O'Kane, C. J., Schulze, K. L. &Sweeney, S. T. (1995) Syntaxin and synaptobrevin function downstream of vesicle docking inDrosophila.Neuron 15, 663–73.

    Google Scholar 

  • Buchner, E., Buchner, S., Crawford, G., Mason, W. T., Salvaterra, P. M. &Sattelle, D. B. (1986) Choline acetyltransferase-like immunoreactivity in the brain ofDrosophila melanogaster.Cell and Tissue Research 246, 57–62.

    Google Scholar 

  • Buckingham, S. D., Balk, M. L., Lummis, S. C. R., Jewess, P. &Sattelle, D. B. (1995) Actions of nitromethylenes on an α-bungarotoxin-sensitive neuronal nicotinic acetylcholine receptor.Neuropharmacology 34, 591–7.

    Google Scholar 

  • Burrows, M. &Siegler, M. V. S. (1978) Graded synaptic transmission between local interneurones and motor neurones in the metathoracic ganglion of the locust.The Journal of Physiology 285, 231–55.

    Google Scholar 

  • Calakos, N. &Scheller, R. H. (1996) Synaptic vesicle biogenesis, docking and fusion: a molecular description.Physiological Reviews 76, 1–29.

    Google Scholar 

  • Callec, J. J. (1974) Synaptic transmission in the CNS of insects. InInsect Neurobiology (edited byTreherne, J. E.) pp. 119–78. Amsterdam, New York: Elsevier.

    Google Scholar 

  • Callec, J. J., Guillet, J. C., Pichon, Y. &Boistel, J. (1971) Further studies on synaptic transmission insects. II. Relations between sensory information and its synaptic integration at the level of a single giant axon in the cockroach.Journal of Experimental Biology 55, 123–49.

    Google Scholar 

  • Camhi, J. M., Tom, W., Volman, S. (1978). The escape behaviour of the cockroachPeriplaneta americana. II. Detection of natural predators by air displacement.Journal of Comparative Physiology 128, 203–12.

    Google Scholar 

  • Chalfie, M., Tu, Y., Euskirschen, G., Ward, W. W. &Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression.Science 263, 802–5.

    Google Scholar 

  • Chen, M. S., Obar, R. A., Schroeder, C. C., Austin, T. W., Poodry, C. A., Wadsworth, S. C. &Vallee, R. B. (1991) Multiple forms of dynamin are encoded byshibire, aDrosophila gene involved in endocytosis.Nature 351, 583–6.

    Google Scholar 

  • Daley, D. L., Vardi, N., Appignani, B., Camhi, J. M. (1981) Morphology of the giant interneurons and cercal nerve projections of the American cockroach.Journal of Comparative Neurology 196, 41–52.

    Google Scholar 

  • Diantonio, A., Parfitt, K. D. &Schwartz, T. L. (1993) Synaptic transmission persists in synaptotagmin mutants ofDrosophila.Cell 73, 1281–90.

    Google Scholar 

  • Epstein, H. F. &Shakes, D. C. (1995)Caenorhabditis elegans: Modern Biological Analysis of an Organism. Methods in Cell Biology, Vol. 48. San Diego: Academic Press.

    Google Scholar 

  • Fleming, J. T., Tornoe, C., Riina, H. A., Coadwell, J., Lewis, J. A. &Sattelle, D. B. (1993) Acetylcholine receptor molecules of the nematodeCaenorhabditis elegans. InComparative Molecular Neurobiology (edited byPichon, Y.) pp. 65–80. Switzerland: Birkhauser Verlag.

    Google Scholar 

  • Fleming, J. T., Baylis, H. A., Sattelle, D. B. &Lewis, J. A. (1996) Molecular biology andin vitro expression ofC. elegans and parasitic nematode ionotropic receptors.Parasitology 113, 5175–5190.

    Google Scholar 

  • Fröhlich, A. M. &Mainertzhagen, I. A. (1982) Synaptogenesis in the first optic neuropile of the fly's visual system.Journal of Neurocytology 11, 159–80.

    Google Scholar 

  • Galzi, J. L. &Changeux, J. P. (1995) Neuronal nicotinic receptors: molecular organization and regulations.Neuropharmacology 34, 563–82.

    Google Scholar 

  • Greenspan, R. J. (1980) Mutations of choline acetyltransferase and associated neural defects inDrosophila melanogaster.Journal of Comparative Physiology 137, 83–92.

    Google Scholar 

  • Greenspan, R. J., Finn, J. A. &Hall, J. C. (1980) Acetylcholinesterase mutants inDrosophila and their effects on the structure and function of the central nervous system.Journal of Comparative Neurology 189, 741–74.

    Google Scholar 

  • Gundelfinger, E. D. (1992) How complex is the nicotinic acetylcholine receptor system of insects?Trends in Neuroscience 15, 206–11.

    Google Scholar 

  • Hall, J. C. (1982) Genetics of the nervous system inDrosophila.Quarterly Review of Biophysics 15, 223–479.

    Google Scholar 

  • Hall, J. C. &Kankel, D. R. (1976) Genetics of acetylcholinesterase inDrosophila melanogaster.Genetics 83, 517–35.

    Google Scholar 

  • Harrison, S. D., Broadie, K., Van de Goor, J., Rubin, G. M. (1994) Mutations in theDrosophila Rop gene suggest a function in general secretion and synaptic transmission.Neuron 13, 555–66.

    Google Scholar 

  • Harrow, I. D., David, J. A. &Sattelle, D. B. (1980) Cockroach giant interneurones stained by cobalt-back-filling of dissected axons.Journal Experimental Biology 84, 341–3.

    Google Scholar 

  • Hilliker, A. J., Clark, S. H., Chovnick, A. &Gelbart, W. M. (1980) Cytogenetic analysis of the chromosomal region immediately adjacent to therosy locus inDrosophila melanogaster.Genetics 95, 95–110.

    Google Scholar 

  • Hodgkin, J., Plasterk, R. H. A. &Waterston, R. H. (1995) The nematodeCaenorhabditis elegans and its genome.Science 270, 410–14.

    Google Scholar 

  • Hosono, R. &Kamiya, Y. (1991) Additional genes result in an elevation of acetylcholine levels by mutation inCaenorhabditis elegans.Neuroscience Letters 128, 243–4.

    Google Scholar 

  • Ikeda, K. &Salvaterra, P. M. (1989) Immunocytochemical study of a temperature-sensitive choline acetyltransferase mutant ofDrosophila melanogaster.Journal of Comparative Neurology 280, 283–90.

    Google Scholar 

  • Itoh, N., Slemmon, J. R., Hawke, D. H., Williamson, R., Morita, E., Hakura, K. M., Roberts, E., Shively, J. E., Crawford, G. D. &Salvaterra, P. M. (1986) Cloning ofDrosophila choline acetyltransferase cDNA.Proceedings of the National Academy of Sciences (USA) 83, 4081–5.

    Google Scholar 

  • Jacobym, J. &Kimmel, C. B. (1982) Synaptogenesis and its relation to growth of the postsynaptic cell: a quantitative study of the developing Mauthner neuron of the Axolotyl.Journal of Comparative Neurology 204, 364–76.

    Google Scholar 

  • Jorgensen, E. M. &Nonet, M. L. (1995) Neuromuscular junctions in the nematodeC. elegans.Seminars in Developmental Biology 6, 207–20.

    Google Scholar 

  • Jorgensen, E. M., Hartweig, E., Schuske, K., Nonet, M. L., Jin, Y. &Horvitz, H. R. (1995) Defective recycling of synaptic vesicles in synaptotagmin mutants ofCaenorhabditis elegans.Nature 378, 196–9.

    Google Scholar 

  • Karlin, A. &Akabas, M. H. (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins.Neuron 15, 1231–44.

    Google Scholar 

  • Katz, B. (1969)The Release of Neural Transmitter Substances. Liverpool: Liverpool University Press.

    Google Scholar 

  • Kelly, R. B. (1988) The cell biology of the nerve terminal.Neuron, 1, 431–8.

    Google Scholar 

  • Kelly, R. B. (1995) Synaptotagmin is just a calcium sensor.Current Opinion in Biology 5, 257–9.

    Google Scholar 

  • Koenig, J. H. &Ikeda, K. (1989) Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval.Journal of Neuroscience 9, 3844–60.

    Google Scholar 

  • Kullberg, R. W., Lentz, T. L. &Cohen, M. W. (1977) Development of the myotomal neuromuscular junction inXenopus laevis: an electrophysiological and fine structural study.Developmental Biology 60, 101–29.

    Google Scholar 

  • Landmesser, L. &Pilar, G. (1972) The onset and development of transmission in the chick ciliary ganglion.Journal of Physiology 222, 691–713.

    Google Scholar 

  • Landolt, A. M. &Ris, H. (1966) Electron microscope studies on soma-somatic interneuronal junctions in the corpus pedunculatum of the wood ant (Formica lugubris Zett).Journal of Cell Biology 28, 391–403.

    Google Scholar 

  • Lane, N. J., Sattelle, D. B. &Hufnagel, L. A. (1983) Pre and postsynaptic structure in insect CNS: intramembranous features and sites of α-bungarotoxin binding.Tissue and Cell 15, 921–37.

    Google Scholar 

  • Lewis, J. A., Wu, C. H., Levine, J. H. &Berg, H. (1980) The genetics of levamisole resistance in the nematode.Caenorhabditis elegans.Genetics 95, 905–28.

    Google Scholar 

  • Lewis, J. A., Fleming, J. T., McLafferty, S., Murphy, J. &Wu, C. (1987) The levamisole receptor, a cholinergic receptor of the nematodeCaenorhabditis elegans.Molecular Pharmacology 31, 185–93.

    Google Scholar 

  • Lindsley, D. &Zimm, G. (1985) The genome ofDrosophila melanogaster, Part 1: Genes A-KDrosophila Information Service 62, 1–227.

    Google Scholar 

  • Littleton, J. T. &Bellen, H. J. (1995) Synaptotagmin controls and modulates synaptic-vesicle fusion in a Ca(2+)-dependent manner.Trends in Neuroscience 18, 177–83.

    Google Scholar 

  • Littleton, J. T., Bellen, H. J. &Perin, M. S. (1993) Expression of synaptotagmin inDrosophila reveals transport and localization of synaptic vesicles to the synapse.Development 118, 1077–88.

    Google Scholar 

  • Littleton, J. T., Stern, M., Perin, M. &Bellen, H. J. (1994) Calcium dependence of neurotransmitter release and rate of spontaneous vesicle fusions are altered inDrosophila synaptotagmin mutants.Proceedings of the National Academy of Sciences (USA) 91, 1088–92.

    Google Scholar 

  • Lundberg, J. M. &Hokfelt, T. (1983) Coexistence of peptides and classical neurotransmitters.Trends in Neuroscience 6, 325–33.

    Google Scholar 

  • Marshall, J., Buckingham, S. D., Shingai, R., Lunt, G. G., Godsey, M. W., Darlison, M. G., Sattelle, D. B. &Barnard, E. A. (1990) Sequence and functional expression of a single α subunit of an insect nicotinic acetylcholine receptor.EMBO Journal 9, 4391–8.

    Google Scholar 

  • Mello, C. &Fire, A. (1995) DNA Transformation.Methods in Cell Biology 48, 451–82.

    Google Scholar 

  • Nakajima, Y., Kidokoro, Y. &Klier, F. G. (1980) The development of functional neuromuscular junctionsin vitro: an ultrastructural and physiological study.Development Biology 77, 520–72.

    Google Scholar 

  • Nawrotzki, R., Blake, D. J. &Davies, K. E. (1996) The genetic basis of neuromuscular disorders.Trends in Genetics 12, 294–8.

    Google Scholar 

  • Nonet, M. L., Grundahl, K., Meyer, B. M. &Rand, J. B. (1993) Synapotic function is impaired but not eliminated inC. elegans mutants lacking synaptotagmin.Cell 73, 1291–305.

    Google Scholar 

  • Pevsner, J., Hsu, S. C., Braun, J. E., Calakos, N., Ting A. E., Bennet, M. K. &Scheller, R. H. (1994) Specificity and regulation of synaptic vesicle docking.Neuron 13, 353–61.

    Google Scholar 

  • Purves, D. &Lichtman, J. W. (1980) Elimination of synapses in the developing nervous system.Science 210, 153–7.

    Google Scholar 

  • Rand, J. B. &Russell, R. L. (1985) Molecular basis of drug-resistant mutations in the nematode.Caenorhabditis elegans.Psychopharmological Bulletin 21, 623–30.

    Google Scholar 

  • Rees, R. P., Bunge, M. B., Bunge, R. P. (1976) Morphological changes in the neuritic growth cone and target neuron during synaptic junction development in culture.Journal of Cell Biology 68, 240–63.

    Google Scholar 

  • Restifo, L. L. &White, K. (1990) Molecular and genetic approaches to neurotransmitter and neuromodulator systems inDrosophila.Advances in Insect Physiology 22, 115–219.

    Google Scholar 

  • Ritzmann, R. E. &Cahmi, J. M. (1978) Excitation of leg motorneurons by giant interneurons in the cockroachPeriplaneta americana.Journal of Comparative Physiology 125, 305–16.

    Google Scholar 

  • Rubin, G. M. (1988)Drosophila melanogaster as an experimental organism.Science 240, 1453–9.

    Google Scholar 

  • Sattelle, D. B. (1980) Acetylcholine receptors of insects.Advances in Insect Physiology 15, 215–315.

    Google Scholar 

  • Sattelle, D. B. &Breer, H. (1990) Cholinergic nerve terminals in the central nervous system of insects. Molecular aspects of structure, function and regulation,Journal of Neuroendocrinology 2, 241–56.

    Google Scholar 

  • Sattelle, D. B., Harrow, I. D., Hue, B., Pelhate, M., Gepner, J. I. &Hall, L. M. (1983) α-Bungarotoxin blocks excitatory synaptic transmission between cercal sensory neurones and giant interneurone 2 of the cockroachPeriplaneta americana.Journal of Experimental Biology 107, 473–89.

    Google Scholar 

  • Sattelle, D. B., Harrow, I. D., David, J. A., Pelhate, M., Callec, J. J., Gepner, J. I. &Hall, L. M. (1985) Nereistoxin: actions on an acetylcholine receptor/ion channel complex in the central nervous system of an insectPeriplaneta americana (L.).Journal of Experimental Biology 118, 37–52.

    Google Scholar 

  • Sattelle, D. B., Buckingham, S. D., Wafford, K. A., Sherby, S. M., Bakry, N. M., Eldefrawi, A. T., Elderfrawi, M. E. &May, T. E. (1989) Actions of the insecticide 2(nitromethylene)tetrahydro-1,3-thiazine on insect and vertebrate nicotinic acetylcholine receptors.Proceedings of the Royal Society of London B 237, 501–14.

    Google Scholar 

  • Scheller, R. (1966) Molecular mechanisms of synaptic transmission. InCoincidence Detection in the Nervous System (edited byKonnerth, A., Tsien, R. Y., Mikoshiba, K. &Altman, J.) pp. 16–22. Strasbourg: Human Frontier Science Programme.

    Google Scholar 

  • Scheller, R. H. &Hall, Z. W. (1992) Chemical messengers at synapses. InAn Introduction to Molecular Neurobiology, (edited byHall, Z.) pp. 19–47. Sunderland, MA: Sinauer Associates Inc.

    Google Scholar 

  • Schulze, K. L., Littleton, J. T., Salzberg, A., Halachmi, N., Stern, M., Lev, Z. &Bellen, H. J. (1994)rop, aDrosophila homolog of yeast Sec1 and vertebrate n-Sec1/Munc-18 proteins, is a negative regulator of neurotransmitter releasein vivo.Neuron 13, 1099–108.

    Google Scholar 

  • Schulze, K. L., Broadie, K., Perin, M. S. &Bellen, H. J. (1995) Genetic and electrophysiological studies ofDrosophila Syntaxin-1A demonstrate its role in nonneuronal secretion and neurotransmission.Cell 80, 2311–20.

    Google Scholar 

  • Shankland, M. (1981) Embryonic development of a sensory afferent projection in the grasshopper embryo. II. Growth and branching of peripheral sensory axons within the CNS.Journal of Embryology and Experimental Morphology 64, 187–209.

    Google Scholar 

  • Shankland, M. &Goodman, C. S. (1982) Development of the dendritic branching pattern of the medial giant interneuron in the grasshopper embryo.Developmental Biology 92, 489–506.

    Google Scholar 

  • Slemmon, J. R., Salvaterra, P. M., Crawford, G. D. &Roberts, E. (1982) Purification of choline acetyltransferase fromDrosophila melanogaster.Journal of Biological Chemistry 257, 3847–52.

    Google Scholar 

  • Sosa, M. A. &Blagburn, J. M. (1995) Competitive intercations between supernumerary and normal sensory neurons in the cockroach are mediated through a change in the quantal content and not quantal size.Journal of Neurophysiology 74, 1573–82.

    Google Scholar 

  • Squire, M. D., Tornoe, C., Baylis, H. A., Fleming, J. T., Barnard, E. A. &Sattelle, D. B. (1995) Molecular cloning and functional expression of aCaenorhabditis elegans nicotinic acetylcholine receptor subunit (arc-2).Receptors and Channels 3, 107–15.

    Google Scholar 

  • Stocker, R. F. &Nüesch, H. (1975) Ultrastructural studies on neuromuscular contacts and the formation of junctions in the flight muscle ofAntherea polyphemus (Lep). I. Normal adult development.Cell Tissue Research 159, 245–66.

    Google Scholar 

  • Sudhof, T. C. (1995) The synaptic vesicle cycle: a cascade of protein-protein interactions.Nature 375, 645–53.

    Google Scholar 

  • Sulston, J. &Horvitz, H. R. (1977) Post-embryonic cell lineages of the nematodeCaenorhabditis elegans.Developmental Biology 56, 110–56.

    Google Scholar 

  • Sulston, J., Du, Z., Thomas, K., Wilson, R., Hillier, L., Staden, R., Halloran, N., Green, P., Thierry-Mieg, J., Qiu, L., Dear, S., Coulson, A., Craxton, M., Durbin, R., Berks, M., Metzstein, M., Hawkins, T., Ainscough, R. &Waterston, R. (1992) TheC. elegans genome sequencing project: a beginning.Nature 356, 37–41.

    Google Scholar 

  • Tolbert, L. P., Matsumoto, S. G. &Hildebrand, J. G. (1983) Development of synapses in the antennal lobes of the mothManduca sexta during metamorphosis.Journal of Neuroscience 3, 1158–75.

    Google Scholar 

  • Treinin, M. &Chalfie, M. (1995) A mutated acetylcholine receptor subunit causes neuronal degeneration inCaenorhabditis elegans.Neuron 14, 871–7.

    Google Scholar 

  • Van der Bliek, A. M. &Meyerowitz, E. M. (1991) Dynamin-like protein encoded by theDrorophila shibire gene associated with vesicular traffic.Nature 351, 411–14.

    Google Scholar 

  • Waterston, R. &Sulston, J. (1995) The genome ofCaenorahabditis elegans.Proceedings of the National Academy of Sciences (USA) 92, 10836–40.

    Google Scholar 

  • Westin, J., Langberg, J. J., Camhi, J. M. (1977) Responses of giant interneurons of the cockroach Periplaneta americana to wind puffs different directions and velocities.Journal of Comparative Physiology 121, 307–24.

    Google Scholar 

  • White, J. G., Southgate, E., Thompson, J. N. &Brenner, S. (1986) The structure of the nervous system ofCaenorhabditis elegans.Philosophical Transactions of the Royal Society of London B.314, 1–340.

    Google Scholar 

  • Wood, W. B. (1988)The Nematode Caenorhabditis elegans. Cold Spring Harbour: Cold Spring Harbour Laboratory.

    Google Scholar 

  • Wood, M. R., Penninger, K. H. &Cohen, M. J. (1977) Two types of pre-synaptic configurations in insect central synapses: an ultrastructiral analysis.Brain Research 130, 25–45.

    Google Scholar 

  • Zinsmaier, K. E., Eberle, K. K., Buchner, E., Walter, N. &Benzer, S. (1994) Paralysis and early death in cysteine string protein mutants ofDrosophila.Science 263, 977–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

25th Anniversary Issue

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baylis, H.A., Sattelle, D.B. & Lane, N.J. Genetic analysis of cholinergic nerve terminal function in invertebrates. J Neurocytol 25, 747–762 (1996). https://doi.org/10.1007/BF02284839

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02284839

Keywords

Navigation