Skip to main content
Log in

Demonstration of a linear composition gradient during water saturation of CO2 in supercritical fluid chromatography

  • Originals
  • Published:
Chromatographia Aims and scope Submit manuscript

Summary

Water was added to CO2 by saturation to increase the solvation power of the mobile phase in supercritical fluid chromatography. The saturation was performed at a temperature above the boiling point of water (100°C) to increase the amount of water which could be loaded homogeneously into the CO2 (2.5–3.0 mol% water as compared to about 0.25 mol% water at 25°C). A linear composition of water was produced by altering the density of the CO2 during saturation. Modifications to the injector and CO2 transfer lines prevented phase separation as a result of the instrumentation used in capillary supercritical fluid chromatography (SFC). After fitting vapor-liquid equilibria data to pressure, density, and temperature conditions, approximately 2.5–3.0 mol% of water was introduced in a linear gradient at 110°C. The effect of water on SFC performance was evaluated with standard steroid compounds. This paper provides further evidence for the need to examine vapor-liquid equilibria data prior to SFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. H. van Konynenburg, Ph.D. dissertation, University of California at Los Angeles, 1968.

  2. P. H. van Konynenburg, R. L. Scott, Phil. Trans. Roy. Soc.298, 495 (1980).

    Google Scholar 

  3. S. H. Page, S. R. Sumpter, M. L. Lee, J. Microcol. Sep.4, 91 (1992).

    Google Scholar 

  4. J. S. Rowlinson, F. L. Swinton, Liquids and Liquid Mixtures, 3rd ed., Butterworth Scientific, Boston, Massachusetts, 1969, p. 191.

    Google Scholar 

  5. M. L. McGlashan, A Specialist Report, Chemical Thermodynamics, Vol. 2, The Chemical Society; London, 1978, p. 105.

    Google Scholar 

  6. J. M. Prausnitz, R. N. Lichtenthaler, E. Gomes de Azevedo, Molecular Thermodynamics of Fluid Phase Equilibria, 2nd ed., Prentice-Hall; Englewood Cliffs, New Jersey, 1986, p. 442.

    Google Scholar 

  7. S. H. Page, S. R. Sumpter, S. R. Goates, M. L. Lee, J. Supercrit. Fluids, submitted.

  8. K. K. Liong, P. A. Wells, N. R. Foster, J. Supercrit. Fluids4, 91 (1991).

    Google Scholar 

  9. G. M. Schneider, Fluid Phase Equilibr.10, 141 (1983).

    Google Scholar 

  10. G. M. Schneider, Angew. Chem. Int. Ed. (Engl.)17, 716 (1978).

    Google Scholar 

  11. Yu. V. Tsekhanskaya, Rus. J. Phys. Chem.45, 744 (1971).

    Google Scholar 

  12. I. W. Swaid, G. M. Schneider, Ber. Bunsenges, Phys. Chem.83, 969 (1979).

    Google Scholar 

  13. M. B. Iomtev, Yu. V. Tsekhanskaya, Rus. J. Phys. Chem.38, 485 (1964).

    Google Scholar 

  14. R. Wiebe, Chem. Rev.29, 475 (1941).

    Google Scholar 

  15. C. R. Coan, A. D. King, Jr., J. Amer. Chem. Soc.93, 1837 (1971).

    Google Scholar 

  16. J. E. France, J. M. Snyder, J. W. King, J. Chromatogr.540, 271 (1991).

    Google Scholar 

  17. B. W. Wright, R. D. Smith, J. Chromatogr.355, 367 (1986).

    Google Scholar 

  18. L. A. Allen, T. E. Glass, H. G. Dom, Anal. Chem.60, 390 (1988).

    Google Scholar 

  19. F. O. Geiser, S. G. Yocklovich, S. M. Lurcott, J. W. Guthrie, E. J. Levy, J. Chromatogr.459, 173 (1988).

    Google Scholar 

  20. H. Engelhardt, A. Gross, R. Mertens, M. Petersen, J. Chromatogr.477, 169 (1989).

    Google Scholar 

  21. G. Brunner, Thesis (for Professorship), University of Erlangen, Nürnberg, Germany, 1978.

  22. J. A. Briones, J. C. Mullins, M. C. Thies, B.-U. Kim, Fluid Phase Equilibr.36, 235 (1987).

    Google Scholar 

  23. A. Zawisza, B. Malesińska, J. Chem. Eng. Data26, 388 (1981).

    Google Scholar 

  24. K. Tödheide, E. U. Franck, Z. Physik. Chem. Neue Folge37, 387 (1963).

    Google Scholar 

  25. S. Takenouchi, G. C. Kennedy, Amer. J. Sci.262, 1055 (1964).

    Google Scholar 

  26. R. C. Kong, S. M. Fields, W. P. Jackson, M. L. Lee, J. Chromatogr.289, 105 (1984).

    Google Scholar 

  27. B. W. Wright, P. A. Peaden, M. L. Lee, T. J. Stark, J. Chromatogr.248, 17 (1982).

    Google Scholar 

  28. I. J. Koski, E. D. Lee, I. Ostrovsky, M. L. Lee, Anal. Chem., submitted.

  29. G. Morrison, J. Phys. Chem.85, 759 (1981).

    Google Scholar 

  30. CRC Handbook on Chemistry and Physics, 66th ed., CRC Press; Boca Raton, Florida, pp. D-190, D-213.

  31. J. M. H. Levelt Sengers, W. T. Chen, J. Chem. Phys.56, 595 (1972).

    Google Scholar 

  32. S. H. Page, D. E. Raynie, S. R. Goates, M. L. Lee, D. J. Dixon, K. P. Johnston, J. Microcol. Sep.3, 355 (1991).

    Google Scholar 

  33. S. H. Page, S. R. Goates, M. L. Lee, J. Supercrit. Fluids4, 109 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, S.H., Malik, A., Sumpter, S.R. et al. Demonstration of a linear composition gradient during water saturation of CO2 in supercritical fluid chromatography. Chromatographia 37, 93–97 (1993). https://doi.org/10.1007/BF02272195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02272195

Key Words

Navigation