Skip to main content
Log in

Invasion of sibmating genes in diploid and haplodiploid populations

  • Papers
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

Existing genetic models of the evolution of sibmating behaviour in diploids incorporate inbreeding depression in terms of reduced fecundity of consanguineous mating pairs rather than reduced survival or fecundity of the progeny of such matings. Here we derive a model to correct this deficiency and extend the model to haplodiploids where differential effects of inbreeding in males and females is a crucial consideration. Our analyses indicate that sibmating can readily evolve in both diploids and haplodiploids in which male mating costs and inbreeding depression are reasonably low, provided there is some mechanism to permit sibmating such as siblings being reared in nests or other forms of aggregation. Our analyses also indicate that once sibmating invades, it typically will go to fixation, although sib-/randommating polymorphisms can persist in both diploids and haplodiploids if male mating costs are close to zero and inbreeding depression reduces survival by around one-third. The conditions favouring sibmating are slightly more restrictive in haplodiploids than in diploids. In light of this we may ask why we see intense sibmating in many haplodiploids such as parasitic wasps, fig wasps, ants, bark beetles and mites, and only rarely in diploid animals. The common factor could be certain kinds of aggregation behaviour that are a prerequisite for sibmating in the absence of kin recognition. Another possibility is that inbreeding depression is likely to be more severe in diploids than in haplodiploids because deleterious recessives are purged from haplodiploid populations when expressed by haploid males. Thus, lower levels of inbreeding depression might be one important reason why sibmating appears to arise more frequently in haplodiploids than diploids. Phylogenetic analysis of groups, such as bark beetles and mites, exhibiting both diploid and haplodiploid populations may be useful in elucidating the relative importance of gregarious behaviour and haplodiploidy in facilitating sibmating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Brown, S. W. (1964) Automatic frequency response in the evolution of male haploidy and other coccid chromosome systems.Genetics 45, 257–74.

    Google Scholar 

  • Bull, J. J. (1983)Evolution of Sex Determining Mechanisms. Benjamin/Cummings, Menlo Park, CA, USA.

    Google Scholar 

  • Bulmer, M. D. (1973) Inbreeding in the great tit.Heredity 30, 313–25.

    Google Scholar 

  • Buskirk, R. E., Frohlich, C. and Ross, K. G. (1984) The natural selection of sexual cannibalism.Am. Nat. 123, 612–25.

    Google Scholar 

  • Charnov, E. L. (1982)The Theory of Sex Allocation. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Cowan, D. P. (1979) Sibling mating in a hunting wasp: adaptive inbreeding?Science 205, 1403–5.

    Google Scholar 

  • Crozier, R. A. (1977) Evolutionary genetics of the Hymenoptera.Annu. Rev. Entomol. 22, 263–88.

    Google Scholar 

  • Edelstein-Keshet, L. (1989)Mathematical Models in Biology. Random House, NY, USA.

    Google Scholar 

  • Eickwort, G. C. (1981) Presocial insects. InSocial Insects (Vol. 2) (H. R. Herman, ed.) pp. 199–281. Academic Press, NY, USA.

    Google Scholar 

  • Entwistle, P. F. (1964) Inbreeding and arrhenotoky in the ambrosia beetleXylebrous compactus (Eich.) (Coleoptera: Scolytidae).Proc. Roy. Entomol. Soc. Lond. A 39, 83–8.

    Google Scholar 

  • Feldman, M. W. and Christiansen, F. B. (1984) Population genetic theory of the cost of inbreeding.Am. Nat. 123, 642–53.

    Google Scholar 

  • Greenwood, P. J., Harvey P. H. and Perrins, C. M. (1978) Inbreeding and dispersal in the great tit.Nature 271, 52–4.

    Google Scholar 

  • Halffter, G. and Edmunds, W. G. (1982)The Nesting Behavior of Dung Beetles (Scarbaeinae). Publicacion del Instituto de Ecologia,10, Mexico, D.F.

  • Hamilton, W. D. (1967) Extraordinary sex ratios.Science 156, 477–88.

    Google Scholar 

  • Hamilton, W. D. (1979) Wingless and fighting males in fig wasps and other insects. InSexual Selection and Reproductive Competition in Insects (M. S. Blum and N. A. Blum, eds) pp. 167–220. Academic Press, NY, USA.

    Google Scholar 

  • Hartl, D. L. and Brown, S. W. (1970). The origin of male haploid genetic systems and their expected sex ratio.Theor. Pop. Biol. 1, 165–90.

    Google Scholar 

  • Hill, J. L., (1974)Peromyscus: effect of early pairing on reproduction.Science 186, 1042–4.

    Google Scholar 

  • Holsinger, K. E., Feldman, M. W. and Christiansen, F. B. (1986) The evolution of self-fertilization in plants: a population genetic model.Am. Nat. 124, 446–53.

    Google Scholar 

  • Kaitala, V. and Getz, W. M. (1992) Sex ratio genetics and the competitiveness of parasitic wasps.Bull. Math. Biol. (in press).

  • Karlin, S. and Lessard, S. (1986)Sex Ratio Evolution. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Kirkendall, L. R. (1983) The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae).Zool. J. Linn. Soc. 77, 293–352.

    Google Scholar 

  • Kirkendall, L. R. (1991) Ecology and evolution of biased sex ratios in bark and ambrosia beetles. inEvolution and Diversity of Sex Ratios: Insects and Mites (D. L. Wrensch and M. A. Ebbert, eds). Chapman and Hall, NY, USA (in press).

    Google Scholar 

  • Leuze, C. C. K. (1980) The application of radio tracking and its effects on the behavioral ecology of the water vole,Arvicola terrestris (Lacépéde). InA Handbook on Biotelemetry and Radio Tracking (C. J. Amlamer and D. W. MacDonald, eds) pp. 361–6. Pergamon Press, Oxford, UK.

    Google Scholar 

  • Maddison, W. P. (1990) A method for testing for correlated evolution of two binary characters: are gains or losses concentrated on certain granches of a phylogenetic tree.Evolution 44, 539–57.

    Google Scholar 

  • Maynard Smith, J. (1984) The ecology of sex. InBehavioural Ecology: an Evolutionary Approach, 2nd edn. (J. R. Krebs and N. B. Davies, eds) pp. 201–21. Blackwell Scientific, Oxford.

    Google Scholar 

  • Michener, C. D. (1974)The Social Behavior of the Bees. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Monteith, G. B. and Storey, R. I. (1981) The biology ofCephalodesmius, a genus of dung beetles which synthesizes “dung” from plant material (Coleoptera: Scarabaeidae: Scarabaeinae).Mem. Qd. Mus. 20, 253–77.

    Google Scholar 

  • Moritz, R. F. A. (1986) The origin of inbreeding depression in honeybees.Bee World 67, 157–163.

    Google Scholar 

  • Nelson-Rees, W. A., Hoy, M. A. and Roush, R. T. (1980) Heterochromatinization, chromatin elimination and haploidization in the parahaploid miteMetaseiulus occidentalis (Nesbitt) (Acarina: Phytoseiidae).Chromosoma 77, 262–76.

    Google Scholar 

  • Nonacs, P. (1986) Ant reproductive strategies and sex allocation theory.Q. Rev. Biol. 61, 1–21.

    Google Scholar 

  • Oliver, J. H. (1977) Cytogenetics of mites and ticks.Annu. Rev. Entomol. 22, 407–29.

    Google Scholar 

  • Oliver, J. H. (1983) Chromosomes, genetic variance and reproductive strategies among mites and ticks.Bull. Entomol. Soc. Am. 29, 8–17.

    Google Scholar 

  • Page, R. E. (1980) The evolution of multiple mating behavior by honey bee queens (Apis mellifera L.).Genetics 96, 263–73.

    Google Scholar 

  • Passera, L., Keller, L. and Suzzoni, J. (1988) Queen replacement in dequeened colonies of the Argentine antIridomyrmex humilis (Mayr).Psyche 95, 59–63.

    Google Scholar 

  • Price, M. V. and Waser, N. M. (1979). Pollen dispersal and optimal outcrossing inDelphinium nelsoni.Nature 277, 294–7.

    Google Scholar 

  • Ratnieks, F. L. W. (1991) The evolution of genetic odor cue diversity in social Hymenoptera.Am. Nat. 137, 202–26.

    Google Scholar 

  • Scott, M. and Traniello, J. F. A. (1990) Behavioural and ecological correlates of male and female parental care and reproductive success in burying beetles (Nicrophorus spp.).Anim. Behav. 39, 274–83.

    Google Scholar 

  • Shields, W. M. (1982)Philopatry, Inbreeding, and the Evolution of Sex. State University of New York Press, Albany, NY, USA.

    Google Scholar 

  • Suzuki, Y. and Hiehata, K. (1985) Mating system and sex ratios in the egg parasitoids,Trichogramma dendrolimi andT. papilionis (Hymenoptera: Trichogrammatidae).Anim. Behav. 33, 1223–7.

    Google Scholar 

  • Thornhill, R. and Alcock, J. (1983)The Evolution of Insect Mating Systems. Harvard University Press, Cambridge, MA, USA.

    Google Scholar 

  • Waage, J. K. (1982) Sib-mating and sex ratio strategies in scelionid wasps.Ecol. Entomol.,7, 103–12.

    Google Scholar 

  • Waage, J. (1986) Family planning in parasitoids: adaptive patterns of progeny and sex allocation. InInsect Parasitoids (J. K. Waage and D. Greathead, eds) pp. 63–95. Academic Press, London.

    Google Scholar 

  • Wang, Y. H. and Gutierrez, A. P. (1980) An assessment of the use of stability analyses in population ecology.J. Anim. Ecol. 49, 435–52.

    Google Scholar 

  • Waser, P. M., Austad, S. N. and Keane, B. (1986) When should animals tolerate inbreeding?Am. Nat. 128, 529–37.

    Google Scholar 

  • Werren, J. H. (1980) Sex ratio adaptations to local mate competition in a parasitic wasp.Science 208, 1157–9.

    Google Scholar 

  • Wood, S. L. (1982) The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae), a taxonomic monograph.Great Basin Naturalist Memoirs 6, 1–1359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Getz, W.M., Kaitala, V. & Ratnieks, F.L.W. Invasion of sibmating genes in diploid and haplodiploid populations. Evol Ecol 6, 312–330 (1992). https://doi.org/10.1007/BF02270968

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02270968

Keywords

Navigation