Skip to main content
Log in

Role of oncogenic transcription factor c-Myc in cell cycle regulation, apoptosis and metabolism

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Themyc gene was initially discovered as a prototypical retrovirally transduced oncogene. Over the decades, abundant evidence has emerged to support a causal role for the activated cellular gene, c-myc, in animal and human tumors. The gene encodes an oncogenic helix-loop-helix leucine zipper transcription factor that acts as a heterodimer with its partner protein, Max, to activate genes regulating the cell cycle machinery as well as critical metabolic enzymes. The additional ability of c-Myc to repress transcription of differentiation-related genes suggest that c-Myc is a central and key molecular integrator of cell proliferation, differentiation and metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams JM, Cory S. Transgenic models of tumor development. Science 254:1161–1167;1991.

    Google Scholar 

  2. Alarcon RM, Rupnow BA, Graeber TG, Knox SJ, Giaccia AJ. Modulation of c-Myc activity and apoptosis in vivo. Cancer Res 56:4315–4319;1996.

    Google Scholar 

  3. Albarosa R, DiDonato S, Finocchiaro G. Redefinition of the coding sequence of the MXI1 gene and identification of a polymorphic repeat in the 3' non-coding region that allows the detection of loss of heterozygosity of chromosome 10q25 in glioblastomas. Hum Genet 95:709–711;1995.

    Google Scholar 

  4. Alland L, Muhle R, Hou H Jr, Potes J, Chin L, Schreiber-Agus N, DePinho RA. Role for N-CoR and histone deacetylase in Sin 3-mediated transcriptional repression. Nature 387:49–55;1997.

    Google Scholar 

  5. Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI, Land H. Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. Nature 359:423–426;1992.

    Google Scholar 

  6. Amin C, Wagner AJ, Hay N. Sequence-specific transcriptional activation by Myc and repression by Max. Mol Cell Biol 13:383–390;1993.

    Google Scholar 

  7. Askew DS, Ashmun RA, Simmons BC, Cleveland JL. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6:1915–1922;1991.

    Google Scholar 

  8. Augenlicht LH, Wadler S, Corner G, Richards C, Ryan L, Multani AS, Pathak S, Benson A, Haller D, Heerdt BG. Low-level c-myc amplification in human colonic carcinoma cell lines and tumors: A frequent, p53-independent mutation associated with improved outcome in a randomized multi-institutional trial. Cancer Res 57:1769–1775;1997.

    Google Scholar 

  9. Ayer DE, Kretzner L, Eisenman RN. Mad: A heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72:211–222;1993.

    Google Scholar 

  10. Ayer DE, Lawrence QA, Eisenman RN. Mad-Max transcriptional expression repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80:767–776;1995.

    Google Scholar 

  11. Bartsch D, Peiffer SL, Kaleem Z, Wells S Jr, Goodfellow PJ. Mxi1 tumor suppressor gene is not mutated in primary pancreatic adenocarcinoma. Cancer Lett 102:73–76;1996.

    Google Scholar 

  12. Battey J, Moulding C, Taub R, Murphy W, Stewart T, Potter H, Lenoir G, Leder P. The human c-myc oncogene: Structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 34:779–787;1983.

    Google Scholar 

  13. Beckmann H, Su LK, Kadesch T. TFE3: A helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif. Genes Dev 4:167–179;1990.

    Google Scholar 

  14. Bello-Fernandez C, Packham G, Cleveland JL. The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci USA 90:7804–7808;1993.

    Google Scholar 

  15. Benvenisty N, Leder A, Kuo A, Leder P. An embryonically expressed gene is a target for c-Myc regulation via the c-Myc-binding sequence. Genes Dev 6:2513–2523;1992.

    Google Scholar 

  16. Berberich SJ, Cole MD. Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers. Genes Dev 6:166–176;1992.

    Google Scholar 

  17. Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I. Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytoma. Nature Genet 5:56–61;1993.

    Google Scholar 

  18. Bhatia K, Spangler G, Gaidano G, Hamdy N, Dalla-Favera R, Magrath I. Mutations in the coding region of c-myc occur frequently in acquired immunodeficiency syndrome-associated lymphomas. Blood 84:883–888;1994.

    Google Scholar 

  19. Bishop JM. Retroviruses and cancer genes. Adv Cancer Res 37:1–32;1982.

    Google Scholar 

  20. Bissonette R, Echeverri F, Mahboubi A, Green D. Apoptotic cell death induced by c-myc is inhibited bybcl-2. Nature 359:552–554;1992.

    Google Scholar 

  21. Bister K, Jansen HW. Oncogenes in retroviruses and cells: Biochemistry and molecular genetics. Adv Cancer Res 47:99–188;1986.

    Google Scholar 

  22. Blackwell TK, Huang J, Ma A, Kretzner L, Alt FW, Eisenman RN, Weintraub H. Binding of myc proteins to canonical and noncanonical DNA sequences. Mol Cell Biol 13:5216–5224;1993.

    Google Scholar 

  23. Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H. Sequence-specific DNA binding by the c-Myc protein. Science 250:1149–1151;1990.

    Google Scholar 

  24. Blackwood EM, Eisenman RN. Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251:1211–1217;1991.

    Google Scholar 

  25. Blackwood EM, Kretzner L, Eisenman RN. Myc and Max function as a nucleoprotein complex. Curr Opin Genet Dev 2:227–235;1992.

    Google Scholar 

  26. Born TL, Frost JA, Schonthal A, Prendergast GC, Feramisco JR. C-myc cooperates with activated ras to induce the cdc2 promoter. Mol Cell Biol 14:5710–5718;1994.

    Google Scholar 

  27. Chou TY, Dang CV, Hart GW. Glycosylation of the c-Myc transactivation domain. Proc Natl Acad Sci USA 92:4417–4421;1995.

    Google Scholar 

  28. Chou TY, Hart GW, Dang CV. c-Myc is glycosylated at threonine-58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem 270:18961–18965;1995.

    Google Scholar 

  29. Clark HM, Yano T, Otsuki T, Jaffe ES, Shibata D, Raffeld M. Mutations in the coding region of c-myc in AIDS-associated and other aggressive lymphomas. Cancer Res 54:3383–3386;1994.

    Google Scholar 

  30. Cole MD. The myc oncogene: Its role in transformation and differentiation. Ann Rev Genet 20:361–384;1986.

    Google Scholar 

  31. Daksis JI, Lu RY, Facchini LM, Marhin WW, Penn LJ. Myc induces cyclin D1 expression in the absence of de novo protein synthesis and links mitogen-stimulated signal transduction to the cell cycle. Oncogene 9:3635–3645;1994.

    Google Scholar 

  32. Dalla-Favera R, Gelmann EP, Martinotti S, Franchini G, Papas TS, Gallo RC, Wong-Staal F. Cloning and characterization of different human sequences related to the one gene (v-myc) of avian myelocytomatosis virus (MC29). Proc Natl Acad Sci USA 79:6497–6501;1982.

    Google Scholar 

  33. Dang CV, Dolde C, Gillison ML, Kato GJ. Discrimination between related DNA sites by a single amino acid residue of Myc-related basic-helix-loop-helix proteins. Proc Natl Acad Sci USA 89:599–602;1992.

    Google Scholar 

  34. Dang CV, Lee LA. c-Myc function in neoplasia. Austin, Landes, 1995.

    Google Scholar 

  35. Davis AC, Wims M, Spotts GD, Hann SR, Bradley A. A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev 7:671–682;1993.

    Google Scholar 

  36. Dong QP, Blatter EE, Ebright YW, Bister K, Ebright RH. Identification of amino acid-base contacts in the Myc-DNA complex by site-specific bromouracil mediated photocrosslinking. EMBO J 13:200–204;1994.

    Google Scholar 

  37. Eagle LR, Yin X, Brothman AR, Williams BJ, Atkin NB, Prochownik EV. Mutation of the MXI1 gene in prostate cancer. Nat Genet 9:249–255;1995.

    Google Scholar 

  38. Edelhoff S, Ayer DE, Zervos AS, Steingrimsson E, Jenkins NA, Copeland NG, Eisenman RN, Brent R, Disteche CM. Mapping of two genes encoding members of a distinct subfamily of MAX interacting proteins: MAD to human chromosome 2 and mouse chromosome 6, and MXI1 to human chromosome 10 and mouse chromosome 19. Oncogene 9:665–668;1994.

    Google Scholar 

  39. Eilers M, Schirm S, Bishop JM. The MYC protein activates transcription of the alpha-prothymosin gene. EMBO J 10:133–141;1991.

    Google Scholar 

  40. Erisman MD, Rothberg PG, Diehl RE, Morse CC, Spandorfer JM, Astrin SM. Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. Mol Cell Biol 5:1969–1976;1985.

    Google Scholar 

  41. Escot C, Theillet C, Lidereau R, Spyratos F, Champeme MH, Gest J, Callahan R. Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc Natl Acad Sci USA 83:4834–4838;1986.

    Google Scholar 

  42. Evan GI, Wyllie AH, Gilbert CS, Littlewood TD, Land H, Brooks M, Waters CM, Penn LZ, Hancock DC. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119–128;1992.

    Google Scholar 

  43. Fanidi A, Harrington EA, Evan GI. Cooperative interaction between c-myc and bcl-2 protooncogenes. Nature 359:554–556;1992.

    Google Scholar 

  44. Ferre-D'Amare AR, Pognonec P, Roeder RG, Burley SK. Structure and function of the b/HLH/Z domain of USF. EMBO J 13:180–189;1994.

    Google Scholar 

  45. Ferre-D'Amare AR, Prendergast GC, Ziff EB, Burley SK. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 363:38–45;1993.

    Google Scholar 

  46. Firth JD, Ebert BL, Ratcliffe PJ. Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem 270:21021–21027.

  47. Fisher DE, Carr CS, Parent LA, Sharp PA. TFEB has DNA-binding and oligomerization properties of a unique helix-loop-helix/leucine-zipper family. Genes Dev 5:2342–2352;1991.

    Google Scholar 

  48. Fisher F, Jayaraman PS, Goding CR. C-myc and the yeast transcription factor PHO4 share a common CACGTG-binding motif. Oncogene 6:1099–1104;1991.

    Google Scholar 

  49. Galaktionov K, Chen X, Beach D. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382:511–517;1996.

    Google Scholar 

  50. Grandori C, Mac J, Siebelt F, Ayer DE, Eisenman RN. Myc-Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo. EMBO J 15:4344–4357;1996.

    Google Scholar 

  51. Gray IC, Phillips SM, Lee SJ, Neoptolemos JP, Weissenbach J, Spurr NK. Loss of the chromosomal region 10q23-25 in prostate cancer. Cancer Res 55:4800–4803;1995.

    Google Scholar 

  52. Gregor PD, Sawadogo M, Roeder RG. The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev 4:1730–1740;1990.

    Google Scholar 

  53. Gu WK, Bhatia K, Magrath IT, Dang CV, Dalla-Favera R. Binding and suppression of the Myc transcriptional activation domain by p107. Science 264:251–254;1994.

    Google Scholar 

  54. Gu W, Cechova K, Tassi V, Dalla-Favera R. Opposite regulation of gene transcription and cell proliferation by c-Myc and Max. Proc Natl Acad Sci USA 90:2935–2939;1993.

    Google Scholar 

  55. Hann SR, Dixit M, Sears RC, Sealy L. The alternatively initiated c-Myc proteins differentially regulate transcription through a noncanonical DNA-binding site. Genes Dev 8:2441–2452;1994.

    Google Scholar 

  56. Hann SR, Sloan-Brown K, Spotts GD. Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev 6:1229–1240;1992.

    Google Scholar 

  57. Hanson KD, Shichiri M, Follansbee MR, Sedivy JM. Effects of c-myc expression on cell cycle progression. Mol Cell Biol 14:5748–5755;1994.

    Google Scholar 

  58. Harper SE, Qiu Y, Sharp PA. Sin3 corepressor function in Myc-induced transcription and transformation. Proc Natl Acad Sci USA 93:8536–8540;1996.

    Google Scholar 

  59. Hayward WS, Neel BG, Astrin SM. Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 290:475–480;1981.

    Google Scholar 

  60. Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK, Rosenfeld MG. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48;1997.

    Google Scholar 

  61. Hermeking H, Eick D. Mediation of c-myc-induced apoptosis by p53. Science 265:2091–2093;1994.

    Google Scholar 

  62. Hoang AT, Cohen KJ, Barrett JF, Bergstrom DA, Dang CV. Participation of cyclin A in Myc-induced apoptosis. Proc Natl Acad Sci USA 91:6875–6879;1994.

    Google Scholar 

  63. Hoang AT, Lutterbach B, Lewis BC, Yano T, Chou TY, Barrett JF, Raffeld M, Hann SR, Dang CV. A link between increased transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain. Mol Cell Biol 15:4031–4042;1995.

    Google Scholar 

  64. Hurlin PJ, Foley KP, Ayer DE, Eisenman RN, Hanahan D, Arbeit JM. Regulation of Myc and Mad during epidermal differentiation and HPV-associated tumorigenesis. Oncogene 11:2487–2501;1995.

    Google Scholar 

  65. Hurlin PJ, Queva C, Eisenman RN. Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev 11:44–58;1997.

    Google Scholar 

  66. Hurlin PJ, Queva C, Koskinen PJ, Steingrimsson E, Ayer DE, Copeland NG, Jenkins NA, Eisenman RN. Mad3 and Md4: Novel Max-interacting transcriptional repressors that suppress c-myc dependent transformation and are expressed during neural and epidermal differentiation. EMBO J 14:5646–5659;1995.

    Google Scholar 

  67. Inghirami G, Grignani F, Sternas L, Lombardi L, Knowles DM, Dalla-Favera R. Down-regulation of LFA-1 adhesion receptors by C-myc oncogene in human B lymphoblastoid cells. Science 250:682–686;1990.

    Google Scholar 

  68. Jansen-Durr P, Meichle A, Steiner P, Pagano M, Finke D, Botz J, Wessbecher J, Draetta G, Eilers M. Differential modulation of cyclin gene expression by MYC. Proc Natl Acad Sci USA 90:3685–3689;1993.

    Google Scholar 

  69. Jones RM, Branda J, Johnston KA, Polymenis M, Gadd M, Rustgi A, Callanan L, Schmidt EV. An essential E box in the promoter of the gene encoding the mRNA cap-binding protein (eukaryotic initiation factor 4E) is a target for activation by c-myc. Mol Cell Biol 16:4754–4764;1996.

    Google Scholar 

  70. Kato GJ, Barrett J, Villa-Garcia M, Dang CV. An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol 10:5914–5920;1990.

    Google Scholar 

  71. Kato GJ, Lee WM, Chen LL, Dang CV. Max: Functional domains and interaction with c-Myc. Genes Dev 6:81–92;1992.

    Google Scholar 

  72. Kawamata N, Park D, Wilczynski S, Yokota J, Koeffler HP. Point mutations of the Mxil gene are rare in prostate cancers. Prostate 29:191–193;1996.

    Google Scholar 

  73. Koskinen PJ, Vastrik I, Makela TP, Eisenman RN, Alitalo K. Max activity is affected by phosphorylation at two NH2-terminal sites. Cell Growth Differ 5:313–320;1994.

    Google Scholar 

  74. Kretzner L, Blackwood EM, Eisenman RN. Myc and Max proteins possess distinct transcriptional activities. Nature 359:426–429;1992.

    Google Scholar 

  75. Lee LA, Dolde C, Barrett J, Wu CS, Dang CV. A link between c-Myc-mediated transcriptional repression and neoplastic transformation. J Clin Invest 97:1687–1695;1996.

    Google Scholar 

  76. Lee LA, Resar LM, Dang CV. Cell density and paradoxical transcriptional properties of c-Myc and Max in cultured mouse fibroblasts. J Clin Invest 95:900–904;1995.

    Google Scholar 

  77. Leone G, DeGregori J, Sears R, Jakoi L, Nevins JR. Myc and Ras collaborate in inducing accumulation of active cyclin E/Cdk2 and E2F. Nature 387:422–426;1997.

    Google Scholar 

  78. Lewis BC, Shim H, Li Q, Wu CS, Lee LA, Maity A, Dang CV. Identification of putative c-Myc-responsive genes: Characterization of rel, a novel growth-related gene. Mol Cell Biol 17:4967–4978;1997.

    Google Scholar 

  79. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella C, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947;1997.

    Google Scholar 

  80. Li LH, Nerlov C, Prendergast G, MacGregor D, Ziff EB. c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J 13:4070–4079;1994.

    Google Scholar 

  81. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD. Amplication and expression of the c-myc oncogene in human lung cancer cell lines. Nature 306:194–196;1983.

    Google Scholar 

  82. Littlewood TD, Amati B, Land H, Evan GI. Max and c-Myc/Max DNA-binding activities in cell extracts. Oncogene 7:1783–1792;1992.

    Google Scholar 

  83. Liu Z, Thompson KS, Towle HC. Carbohydrate regulation of the rat L-type pyruvate kinase gene requires two nuclear factors: LF-A1 and a member of the c-myc family. J Biol Chem 268:12787–12795;1993.

    Google Scholar 

  84. Luscher B, Eisenman RN. Mitosis-specific phosphorylation of the nuclear oncoproteins Myc and Myb. J Cell Biol 118:775–784;1992.

    Google Scholar 

  85. Luscher B, Kuenzel EA, Krebs EG, Eisenman RN. Myc oncoproteins are phosphorylated by casein kinase II. EMBO J 8:1111–1119;1989.

    Google Scholar 

  86. Lutterbach B, Hann SR. Hierarchical phosphorylation at n-terminal transformation-sensitive sites in c-myc protein is regulated by mitogens and in mitosis. Mol Cell Biol 14:5510–5522;1994.

    Google Scholar 

  87. Mai S, Fluri M, Siwarski D, Huppi K. Genomic instability in MycER-activated Rat1A-MycER cells. Chromosome Res 4:365–371;1996.

    Google Scholar 

  88. Mai S, Hanley-Hyde J, Fluri M. c-Myc overex-pression associated DHFR gene amplification in hamster, rat, mouse and human cell lines. Oncogene 12:277–288;1996.

    Google Scholar 

  89. Mai S, Jalava A. C-myc binds to 5′ flanking sequence motifs of the dihydrofolate reductase gene in cellular extracts — role in proliferation. Nucleic Acids Res 22:2264–2273;1994.

    Google Scholar 

  90. Mai S, Martensson IL. The c-myc protein represses the lambda 5 and TdT initiators. Nucleic Acids Res 23:1–9;1995.

    Google Scholar 

  91. Marcu K, Bossone S, Patel A. Myc function and regulation. Annu Rev Biochem 61:809–860;1992.

    Google Scholar 

  92. Marhin WW, Chen S, Facchini LM, Fornace J, Penn AJ, Penn LZ. Myc represses the growth arrest gene gadd45. Oncogene 14:2825–2834;1997.

    Google Scholar 

  93. Mariani-Costantini R, Escot C, Theillet C, Gentile A, Merlo G, Lidereau R, Callahan R. In situ c-myc expression and genomic status of the c-myc locus in infiltrating ductal carcinomas of the breast. Cancer Res 48:199–205;1988.

    Google Scholar 

  94. Mathupala SP, Rempel A, Pedersen PL. Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type II hexokinase. J Biol Chem 270:16918–16925;1995.

    Google Scholar 

  95. Miltenberger RJ, Sukow KA, Farnham PJ. An E-box-mediated increase incad transcription at the G1/S-phase boundary is suppressed by inhibitory c-Myc mutants. Mol Cell Biol 15:2527–2535;1995.

    Google Scholar 

  96. Munzel P, Marx D, Kochel H, Schauer A, Bock KW. Genomic alterations of the c-myc protooncogene in relation to the overexpression of c-erbB2 and Ki-67 in human breast and cervix carcinomas. J Cancer Res Clin Oncol 117:603–607;1991.

    Google Scholar 

  97. Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380;1997.

    Google Scholar 

  98. Neel BG, Hayward WS, Robinson HL, Fang J, Astrin SM. Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: Oncogenesis by promoter insertion. Cell 23:323–334;1981.

    Google Scholar 

  99. Nozaki N, Naoe T, Okazaki T. Immunoaffinity purification and characterization of CACGTG sequence-binding proteins from cultured mammalian cells using an anti c-Myc monoclonal antibody recognizing the DNA-binding domain. J Biochem 121:550–559;1997.

    Google Scholar 

  100. Packham G, Bellofernandez C, Cleveland JL. Position and orientation independent transactivation by c-Myc. Cell Mol Biol Res 40:699–706;1994.

    Google Scholar 

  101. Packham G, Cleveland JL. Ornithine decarboxylase is a mediator of c-myc-induced apoptosis. Mol Cell Biol 14:5741–5747;1994.

    Google Scholar 

  102. Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:190–274;1978.

    Google Scholar 

  103. Pena A, Reddy CD, Wu S, Hickok NJ, Reddy EP, Yumet G, Soprano DR, Soprano KJ. Regulation of human ornithine decarboxylase expression by the c-Myc. Max protein complex. J Biol Chem 268:27277–27285;1993.

    Google Scholar 

  104. Perez-Roger I, Solomon DLC, Sewing A, Land H. Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27Kip1 binding to newly formed complexes. Oncogene 14:2373–2381;1997.

    Google Scholar 

  105. Philipp A, Schneider A, Vasrik I, Finke K, Xiong Y, Beach D, Alitalo K, Eilers M. Repression of cyclin d1 — a novel function of myc. Mol Cell Biol 14:4032–4043;1994.

    Google Scholar 

  106. Potter M, Wiener F. Plasmacytomagenesis in mice: Model of neoplastic development dependent upon chromosomal translocations. Carcinogenesis 13:1681–1697;1992.

    Google Scholar 

  107. Prendergast GC, Diamond LE, Dahl D, Cole MD. The c-myc-regulated gene mrl encodes plasminogen activator inhibitor 1. Mol Cell Biol 10:1265–1269;1990.

    Google Scholar 

  108. Prendergast GC, Lawe D, Ziff EB. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 65:395–407;1991.

    Google Scholar 

  109. Prendergast GC, Ziff EB. DNA-binding motif. Nature 341:392;1989.

    Google Scholar 

  110. Prendergast GC, Ziff EB. Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science 251:186–189;1991.

    Google Scholar 

  111. Ptashne M, Gann AF. Nature 346:329–331;1990.

    Google Scholar 

  112. Reisman D, Elkind N, Roy B, Beamon J, Rotter V. c-Myc trans-activate the p53 promoter through a required downstream CACGTG motif. Cell Growth Differ 4:57–65;1993.

    Google Scholar 

  113. Rempel A, Mathupala SP, Griffin CA, Hawkins AL, Pedersen PL. Glucose catabolism in cancer cells: Amplification of the gene encoding type II hexokinase. Cancer Res 56:2468–2471;1996.

    Google Scholar 

  114. Rosenwald IB, Lazariskaratzas A, Sonenberg N, Schmidt EV. Elevated levels of cyclin D1 protein in response to increased expression of eukaryotic initiation factor 4E. Mol Cell Biol 13:7358–7363;1993.

    Google Scholar 

  115. Rosenwald IB, Rhoads DB, Callanan LD, Isselbacher KJ, Schmidt EV. Increased expression of eukaryotic translation initiation factors eIF-4E and eIF-2 alpha in response to growth induction by c-myc. Proc Natl Acad Sci USA 90:6175–6178;1993.

    Google Scholar 

  116. Roy AL, Carruthers C, Gutjahr T, Roeder RG. Direct role for Myc in transcription initiation mediated by interactions with TFII-I. Nature 365:359–361;1993.

    Google Scholar 

  117. Roy B, Beamon J, Balint E, Reisman D. Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Mol Cell Biol 14:7805–7815;1994.

    Google Scholar 

  118. Rudolph B, Saffrich R, Zwicker J, Henglein B, Muller R, Ansorge W, Eilers M. Activation of cyclin-dependent kinases by Myc mediates induction of cyclin A, but not apoptosis. EMBO J 15:3065–3076;1996.

    Google Scholar 

  119. Schoenenberger CA, Andres AC, Groner B, van der Valk M, LeMeur M, Gerlinger P. Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J 7:169–175;1988.

    Google Scholar 

  120. Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G, Guida P, Skoultchi AI, DePinho RA. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80:777–786;1995.

    Google Scholar 

  121. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271:32529–2537;1996.

    Google Scholar 

  122. Semenza GL, Roth PH, Fang HM, Wang GL. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763;1994.

    Google Scholar 

  123. Shapiro DN, Valentine V, Eagle L, Yin X, Morris SW, Prochownik EV. Assignment of the human MAD and MXI1 genes to chromosomes 2p12-p13 and 10q24-q25. Genomics 23:282–285;1994.

    Google Scholar 

  124. Sheiness D, Fanshier L, Bishop JM. Identification of nucleotide sequences which may encode the oncogenic capacity of avian retrovirus MC29. J Virol 28:600–610;1978.

    Google Scholar 

  125. Shih HM, Liu Z, Towle HC. Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J Biol Chem 270:21991–21997;1995.

    Google Scholar 

  126. Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R, Dang CV. c-Myc transactivation of LDH-A: Implications for tumor metabolism and growth. Proc Natl Acad Sci USA 94:6658–6663;1997.

    Google Scholar 

  127. Shimizu E, Shirasawa H, Kodama K, Sato T, Simizu B. Expression, regulation and polymorphism of the mxil genes. Gene 176:45–48;1996.

    Google Scholar 

  128. Skoda RC, Tsai SF, Orkin SH, Leder P. Expression of c-MYC under the control of GATA-1 regulatory sequences causes erythroleukemia in transgenic mice. J Exp Med 181:1603–1613;1995.

    Google Scholar 

  129. Smale ST, Baltimore D. The ‘initiator’ as a transcription control element. Cell 57:103–113;1989.

    Google Scholar 

  130. Smith-Sorensen B, Hijmans EM, Beijersbergen RL, Bernards R. Functional analysis of Burkitt's lymphoma mutant c-Myc proteins. J Biol Chem 271:5513–5518;1996.

    Google Scholar 

  131. Spotts GD, Patel SV, Xiao Q, Hann SR. Identification of downstream-initiated c-Myc proteins which are dominant-negative inhibitors of transactivation by full-length c-Myc proteins. Mol Cell Biol 17:1459–1468;1997.

    Google Scholar 

  132. Tavtigian SV, Zabludoff SD, Wold BJ. Cloning of mid-G1 serum response genes and identification of a subset regulated by conditioned myc expression. Mol Biol Cell 5:375–388;1994.

    Google Scholar 

  133. Tikhonenko AT, Black DJ, Linial ML. Viral Myc oncoproteins in infected fibroblasts down-modulate thrombospondin-1, a possible tumor suppressor gene. J Biol Chem 271:30741–30747;1996.

    Google Scholar 

  134. Tsuneoka M, Nakano F, Ohgusu H, Mekada E. c-myc activates RCC1 gene expression through E-box elements. Oncogene 14:2301–2311;1997.

    Google Scholar 

  135. Valera A, Pujol A, Gregori X, Riu E, Visa J, Bosch F. Evidence from transgenic mice that myc regulates hepatic glycolysis. FASEB J 9:1067–1078;1995.

    Google Scholar 

  136. Van Antwerp ME, Chen DG, Chang C, Prochownik EV. A point mutation in the MyoD basic domain imparts c-Myc-like properties. Proc Natl Acad Sci USA 89:9010–9014;1992.

    Google Scholar 

  137. Versteeg R, Noordermeer I, Kruse-Wolters M, Ruiter D, Schrier P. c-myc down-regulates class I HLA expression in human melanomas. EMBO J 7:1023–1029;1988.

    Google Scholar 

  138. Vlach J, Hennecke S, Alevizopoulos K, Conti D, Amati B. Growth arrest by the cyclin-dependent kinase inhibitor p27Kipl is abrogated by c-Myc. EMBO J 15:6595–6604;1996.

    Google Scholar 

  139. Wagner AJ, Kokontis JM, Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21 waf1/cip1. Genes Dev 8:2817–2830;1994.

    Google Scholar 

  140. Wagner AJ, Meyers C, Laimins LA, Hay N. c-Myc induces the expression and activity of ornithine decarboxylase. Cell Growth Differ 4:879–883;1993.

    Google Scholar 

  141. Wagner AJ, Small MB, Hay N. Myc-mediated apoptosis is blocked by ectopic expression of Bcl-2. Mol Cell Biol 13:2432–2440;1993.

    Google Scholar 

  142. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514;1995.

    Google Scholar 

  143. Warburg O. The Metabolism of Tumours. London, Constable, 1930.

    Google Scholar 

  144. Warburg O. On the origin of cancer cells. Science 123:309–314;1956.

    Google Scholar 

  145. Wechsler DS, Hawkins AL, Li X, Jabs EW, Griffin CA, Dang CV. Localization of the human Mxi1 transcription factor gene (MXI1) to chromosome 10q24-q25. Genomics 21:669–672;1994.

    Google Scholar 

  146. Wechsler DS, Shelly CA, Dang CV. Genomic organization of human MXI1, a putative tumor suppressor gene. Genomics 32:466–470;1996.

    Google Scholar 

  147. Wu S, Pena A, Korcz A, Soprano DR, Soprano KJ. Overexpression of Mxi1 inhibits the induction of human ornithine decarboxylase gene by the Myc/Max protein complex. Oncogene 12:621–629;1996.

    Google Scholar 

  148. Yang BS, Geddes TJ, Pogulis RJ, de Crombrugghe B, Freytag SO. Transcriptional suppression of cellular gene expression by c-Myc. Mol Cell Biol 11:2291–2295;1991.

    Google Scholar 

  149. Yang BS, Gilbert JD, Freytag SO. Overexpression of Myc suppresses CCAAT transcription factor/nuclear factor 1-dependent promoters in vivo. Mol Cell Biol 13:3093–3102;1993.

    Google Scholar 

  150. Yano T, Sander C, Clark H, Dolezal M, Jaffe E, Raffeld M. Clustered mutations in the second exon of the MYC gene in sporadic Burkitt's lymphoma. Oncogene 8:2741–2748;1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang, C.V., Lewis, B.C. Role of oncogenic transcription factor c-Myc in cell cycle regulation, apoptosis and metabolism. J Biomed Sci 4, 269–278 (1997). https://doi.org/10.1007/BF02258350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02258350

Key Words

Navigation