Skip to main content
Log in

Pharmacological characterization of the nociceptin receptor, ORL1

Insight from the inward rectifier activation in the periaqueductal gray

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

A novel opioid receptor-like orphan receptor (ORL1) was cloned and identified to be homologous to classical opioid receptors but insensitive to traditional opioids. A heptadecapeptide, termed orphanin FQ or nociceptin (OFQ/N), was identified as its endogenous ligand. OFQ/N shares overlapping distribution sites in pain-processing areas and common cellular mechanisms with opioids but exerts diverse effects on nociceptive responses. Of the two reported ORL1 antagonists, [Phe1ψ(CH2-NH)-Gly2] nociceptin-(1–13)-NH2 (Pheψ) and naloxone benzoylhydrazone (NBZ), antagonisms were validated in the activation of inward rectifying K channels induced by OFQ/N, using the patch clamp technique in ventrolateral periaqueductal gray slices. Results showed that Pheψ acted as a partial agonist and NBZ was a weak nonselective antagonist of ORL1. It is comparable with most but not all of the findings from other tissues. Comparing all the reports supports the above inference for these two antagonists. The possible causes for the discrepancy were discussed. A brief review on the putative ORL1 antagonists, acetyl-RYYRIK-NH2, some σ-ligands and the functional antagonist, nocistatin, is also included. It indicates that a potent and selective ORL1 antagonists is expecting to elucidate the physiological role of OFQ/N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdulla FA, Smith PA. Axotomy reduces the effect of analgesic opioids yet increases the effect of nociceptin on dorsal root ganglion neurons. J Neurosci 18:9685–9694;1998.

    Google Scholar 

  2. Abdulla FA, Smith PA. Nociceptin inhibits T-type Ca channel current in rat sensory neurons by a G-protein-independent mechanism. J Neurosci 17:8721–8728;1997.

    Google Scholar 

  3. Allen CN, Jiang Z-G, Teshima K, Darland T, Ikeda M, Nelson CS, Quigley DI, Yoshioka T, Allen RG, Rea MA, Grandy DK. Orphanin-FQ/nociceptin (OFQ/N) modulates the activity of suprachiasmatic nucleus neurons. J Neurosci 19:2152–2160;1999.

    PubMed  Google Scholar 

  4. Anton B, Fein J, To T, Li X, Silberstein L, Evans CJ. Immunohistochemical localization of ORL-1 in the central nervous system of the rat. J Comp Neurol 368:229–251;1996.

    Google Scholar 

  5. Berger H, Albrecht E, Wallukat G, Bienert M. Antagonism by acetyl-RYYRIK-NH2 of G protein activation in rat brain preparations and of chronotropic effect on rat cardiomyocytes evoked by nociceptin orphanin FQ. Br J Pharmacol 126:555–558;1999.

    Google Scholar 

  6. Berger H, Albrecht E, Wallukat G, Calo G, Bigoni R, Bienert M. Acetyl-RYYRIK-NH2, a nociceptin/orphanin FQ (NOC/OFQ) receptor ligand, exhibits properties of an antagonist and agonist as well. Regul Pept 80:122;1999.

    Google Scholar 

  7. Berzetei-Gurske IP, White A, Polgar W, DeCosta BR, Pasternak GW, Toll L. The in vitro pharmacological characterization of naloxone benzoylhydrazone. Eur J Pharmacol 277:257–263;1995.

    Article  PubMed  Google Scholar 

  8. Bigoni R, Giuliani S, Calo G, Rizzi A, Guerrini R, Salvadori S, Regoli D, Maggi CA. Characterization of nociceptin receptors in the periphery: In vitro and in vivo studies. Naunyn Schmiedebergs Arch Pharmacol 359:160–167;1999.

    Google Scholar 

  9. Bucher B. ORL1 receptor-mediated inhibition by nociceptin of noradrenaline release from perivascular sympathetic nerve endings of the rat tail artery. Naunyn Schmiedeberg's Arch Pharmacol 358:682–685;1998.

    Google Scholar 

  10. Butour JL, Moisand C, Mollereau C, Meunier JC. [Phe1ψ(CH2-NH)Gly2]ociceptin-(1–13)-NH2 is an agonist of the nociceptin (ORL1) receptor. Eur J Pharmacol 349:R5-R6;1998.

    Google Scholar 

  11. Calo G, Rizzi A, Marzola G, Guerrini R, Salvadori S, Beani L, Regoli D, Bianchi C. Pharmacological characterization of the nociceptin receptor mediating hyperalgesia in the mouse tail withdrawal assay. Br J Pharmacol 125:373–378;1998.

    Article  PubMed  Google Scholar 

  12. Carpenter KJ, Dickenson AH. Evidence that [Phe1ψ(CH2-NH)Gly2]nociceptin-(1–13)-NH2, a peripheral ORL-1 receptor antagonist, acts as an agonist in the rat spinal cord. Br J Pharmacol 125:949–951;1998.

    Article  PubMed  Google Scholar 

  13. Chiou LC. [Phe1ψ(CH2-NH)Gly2]nociceptin-(1–13)-NH2 activation of the inward rectifier as a partial agonist of ORL1 in rat periaqueductal gray. Br J Pharmacol 128:103–107;1999.

    Article  PubMed  Google Scholar 

  14. Chu XP, Xu NS, Li P, Wang JQ: The nociceptin receptor-mediated inhibition of the rat rostral ventrolateral medulla neurons in vitro. Eur J Pharmacol 364:49–53;1999.

    PubMed  Google Scholar 

  15. Clark JA, Liu L, Price M, Hersh B, Edelson M, Pasternak GW. Kappa opiate receptor multiplicity: Evidence for two U50,488-sensitive kappa 1 subtypes and a novel kappa 3 subtype. J Pharmacol Exp Ther 251:461–468;1989.

    PubMed  Google Scholar 

  16. Corradini L, Bertorelli R, Ongini E. Nociceptin and [Phe1ψ(CH2-NH)Gly2]nociceptin-(1–13)-NH2 exert anti-opioid effects in the arthritic rat model. Regul Pept 80:107;1999.

    PubMed  Google Scholar 

  17. Darland T, Heinricher MM, Grandy DK. Orphanin FQ/nociceptin: A role in pain and analgesia, but so much more. Trends Neurosci 21:215–221;1998.

    Article  PubMed  Google Scholar 

  18. Doi N, Dutia MB, Russell JA. Inhibition of rat oxytocin and vasopressin supraoptic nucleus neurons by nociceptin in vitro. Neuroscience 84:913–921;1998.

    Article  Google Scholar 

  19. Dooley CT, Spaeth CG, Berzetei-Gurske IP, Craymer K, Adapa ID, Brandt SR, Houghten RA, Toll L. Binding and in vitro activities of peptides with high affinity for the nociceptin/orphanin FQ receptor, ORL1. J Exp Pharmacol Ther 283:735–741;1997.

    Google Scholar 

  20. Dunnil RJ, Kakizawa K, Henderson G. Characterization of the actions of naloxone benzoylhydrazone at μ-opioid, κ-opioid and ORL1 receptors in isolated tissues from rat and guineapig. Br J Pharmacol 119:275;1996.

    Google Scholar 

  21. Gistrak MA, Paul D, Hahn EF, Pasternak GW. Pharmacological actions of a novel mixed opiate agonist/antagonist: Naloxone benzoylhydrazone. Biochem Biophys Res Commun 230:462–465;1989.

    Google Scholar 

  22. Grisel JE, Farrier DE, Wilson SG, Mogil JS. [Phe1ψ(CH2-NH)Gly2]nociceptin-(1–13)-NH2 acts as an agonist of the orphanin FQ/nociceptin receptor in vivo. Eur J Pharmacol 357:R1-R3;1998.

    PubMed  Google Scholar 

  23. Guerrini R, Calo G, Rizzi A, Bigoni R, Bianchi C, Salvadori S, Regoli D. A new selective antagonist of the nociceptin receptor. Br J Pharmacol 123:163–165;1998.

    Article  Google Scholar 

  24. Han SH, Cho YW, Kim CJ, Min BI, Rhee IS, Akaike N. Mu-opioids agonist-induced activation of G-protein-coupled inwardly rectifying potassium current in rat periaqueductal gray neurons. Neuroscience 90:209–219;1999.

    PubMed  Google Scholar 

  25. Hiramatsu M, Inoue K. Effects of nocistatin on nociceptin-induced impairment of learning and memory in mice. Eur J Pharmacol 367:151–155;1999.

    PubMed  Google Scholar 

  26. Kapusta DR, Chang J-K, Kenigs VA. Central administration of [Phe1ψ(CH2-NH)Gly2]nociceptin-(1–13)-NH2 and orphanin FQ/nociceptin (OFQ/N) produce similar cardiovascular and renal responses in conscious rats. J Pharmacol Exp Ther 289:173–180;1999.

    PubMed  Google Scholar 

  27. King M, Chang A, Pasternak GW. Functional blockade of opioid analgesia by orphanin FQ/nociceptin. Biochem Pharmacol 55:1537–1540;1998.

    Article  PubMed  Google Scholar 

  28. Kobayashi T, Ikeda K, Togashi S, Itoh N, Kumanishi T. Effects of sigma ligands on the nociceptin/orphanin FQ receptor coexpressed with the G-protein-activated K+ channel in Xenopus oocytes. Br J Pharmacol 120:986–987;1997.

    PubMed  Google Scholar 

  29. Mamiya T, Noda Y, Nishi M, Takeshima H, Nabeshima T. Nociceptin system plays a role in the memory retention: Involvement of naloxone benzoylhydrazone binding sites. Neuroreport 10:1171–1175;1999.

    PubMed  Google Scholar 

  30. Mathis JP, Ryan-Moro J, Chang A, Hom JSH, Scheinberg DA, Pasternak GW. Biochemical evidence for orphanin FQ/nociceptin receptor heterogeneity in mouse brain. Biochem Biophys Res Commun 230:462–465;1997.

    Article  PubMed  Google Scholar 

  31. Meis S, Pape H-C. Postsynaptic mechanisms underlying responsiveness of amygdaloid neurons to nociceptin/orphanin FQ. J Neurosci 15:8133–8144;1998.

    Google Scholar 

  32. Meunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour J-L, Guillemot J-C, Ferrara P, Monsarrat B, Mazarguil H, Vassart G, Parmentier M, Costentin J. Isolation and structure of the endogenous agonist of opioid receptor-like ORL1 receptor. Nature 377:532–535;1995.

    Article  PubMed  Google Scholar 

  33. Mogil JS, Grisel JE, Reinscheid RK, Civelli O, Belknap JK, Grandy DK. Orphanin FQ is a functional anti-opioid peptide. Neuroscience 75:333–337;1996.

    Article  PubMed  Google Scholar 

  34. Mollereau C, Parmentier M, Mailleux P, Butour JL, Moisand C, Chalon P, Caput D, Vassart G, Meunier JC. ORL1, a novel member of the opioid receptor family: Cloning, functional expression and localization. FEBS Lett 341:33–38;1994.

    PubMed  Google Scholar 

  35. Monteillet-Agius G, Fein J, Anton B, Evans CJ. ORL-1 and mu opioid receptor antisera label different fibers in areas involved in pain processing. J Comp Neurol 399:373–383;1998.

    Article  PubMed  Google Scholar 

  36. Montiel J-C, Cornille F, Roques BP, Noble F. Nociceptin/orphanin FQ metabolism: Role of aminopeptidase and endopeptidase 24.15. J Neurochem 68:354–361;1997.

    PubMed  Google Scholar 

  37. Morgan MM, Grisel JE, Robbins CS, Grandy DK. Antinociceptin mediated by the periaqueductal gray is attenuated by orphanin. Neuroreport 8:3431–3434;1997.

    PubMed  Google Scholar 

  38. Nicholson JR, Paterson SJ, McKnight AT. Characterisation of the response in the rat vas deferens to the ORL1 agonist nociceptin. Br J Pharmacol 119:36P;1996.

    Google Scholar 

  39. Nicol B, Lambert DG, Rowbotham DJ, Okudaashitaka E, Ito S, Smart D, Mcknight A. Nocistatin reverses nociceptin inhibition of glutamate release from rat brain slices. Eur J Pharmacol 356:R1-R3;1998.

    Article  PubMed  Google Scholar 

  40. Nicol B, Okawa H, Rowbotham DJ, Lambert DG. Effects of naloxone benzoylhydrazone (NBZ) on nociceptin signalling in rat brain and CHO cells expressing recombinant nociceptin receptors. Regul Pept 80:125;1999.

    Google Scholar 

  41. Noda Y, Mamiya T, Nabeshima T, Nishi M, Higashioka M, Takeshima H. Loss of antinociceptin induced by naloxone benzoylhydrazone in nociceptin receptor-knockout mice. J Biol Chem 273:18047–18051;1998.

    PubMed  Google Scholar 

  42. Nothacker HP, Reinscheid RK, Mansour A, Henningsen RA, Ardati A, Monsma FJ Jr, Watson SJ, Civelli O. Primary structure and tissue distribution of the orphanin FQ precursor. Proc Natl Acad Sci USA 93:8677–8682;1996.

    Article  PubMed  Google Scholar 

  43. Okawa H, Nicol B, Bigoni R, Hirst RA, Calo G, Guerrini R, Rowbotham DJ, Smart D, McKnight AT, Lambert DG. Comparison of the effects of [Phe1ψ(CH2-NH)Gly2]nociceptin-(1–13)-NH2 in rat brain, rat vas deferens and CHO cells expressing recombinant human nociceptin receptors. Br J Pharmacol 127:123–130;1999.

    Article  PubMed  Google Scholar 

  44. Okuda-Ashitaka E, Minami T, Tachibana S, Yoshihara Y, Nishiuchi Y, Kimura T, Ito S. Nocistatin, a peptide that blocks nociceptin action in pain transmission. Nature 392:286–289;1998.

    Article  PubMed  Google Scholar 

  45. Olianas MC, Maullu C, Ingianni A, Onali P. [Phe1ψ(CH2-NH)Gly2]nociceptin-(1–13)-NH2 acts as a partial agonist at ORL1 receptor endogenously expressed in mouse N1E-115 neuroblastoma cells. Neuroreport 10:1127–1131;1999.

    PubMed  Google Scholar 

  46. Price M, Gistrak MA, Itzhak Y, Hahn EF, Pasternak GW. Receptor binding of [3H]naloxone benzoylhydrazone: A reversible κ and slowly dissociable μ opiate. Mol Pharmacol 35:67–74;1989.

    PubMed  Google Scholar 

  47. Reinscheid RK, Nothacker H-P, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ, Civelli O. Orphanin FQ: A novel neuropeptide which is a natural ligand of an opioid-like G protein-coupled receptor. Science 270:792–764;1995.

    Google Scholar 

  48. Rizzi A, Calo G, Trevisani M, Tognetto M, Fabbri L, Mapp C, Guerrini R, Salvadori S, Regoli D, Geppetti P. Nociceptin receptor activation inhibits tachykinergic nonadrenergic noncholinergic contraction of guinea pig isolated bronchus. Life Sci 64:157–163;1999.

    Article  Google Scholar 

  49. Rossi GC, Perlmutter M, Leventhal L, Talatti A, Pasternak GW. Orphanin FQ/nociceptin analgesia in the rat. Brain Res 792:327–330;1998.

    Article  PubMed  Google Scholar 

  50. Sbrenna S, Marti M, Morari M, Calo G, Guerrini R, Beani L, Bianchi C. 5-Hydroxytryptamine,L-Glu and GABA efflux from rat cerebrocortical synaptosomes: Modulation by opioid receptor like 1 receptor. Regul Pept 80:127;1999.

    Google Scholar 

  51. Schlicker E, Werthwein S, Kathmann M, Bauer U. Nociceptin inhibits noradrenaline release in the mouse brain cortex via presynaptic ORL1 receptors. Naunyn Schmiedebergs Arch Pharmacol 358:418–422;1998.

    PubMed  Google Scholar 

  52. Schulz S, Schreff M, Nuss D, Gramsch C, Hollt V. Nociceptin/orphanin FQ and opioid peptides show overlapping distribution but not colocalization in pain-modulatory brain regions. Neuroreport 7:3021–3025;1996.

    PubMed  Google Scholar 

  53. Shah S, Page CP, Spina D. Nociceptin inhibits non-adrenergic non-cholinergic contraction in guinea-pig airway. Br J Pharmacol 125:510–516;1998.

    Article  PubMed  Google Scholar 

  54. Slugg RM, Ronnekleiv OK, Grandy DK, Kelly MJ. Activation of an inwardly rectifying K+ conductance by orphanin-FQ/nociceptin in vasopressin-containing neurons. Neuroendocrinology 69:385–396;1999.

    Article  PubMed  Google Scholar 

  55. Tian J-H, Zhang W, Fang Y, Xu W, Grandy DK, Han JS. Bidirectional modulatory effect of orphanin FQ on morphine-induced analgesia: Antagonism in brain and potentiation in spinal cord of the rat. Br J Pharmacol 120:676–680;1997.

    PubMed  Google Scholar 

  56. Toll L, Burnside J, Berzetei-Gurske I. Agonist activity of ORL1 antagonists is dependent upon receptor number. 29th International Narcotic Research Conference, Garmisch-Partenkirchen, 1998, A89.

  57. Vaughan CW, Ingram SL, Christie MJ. Actions of the ORL1 receptor ligand nociceptin on membrane properties of rat periaqueductal gray neurons in vitro. J Neurosci 17:996–1003;1997.

    PubMed  Google Scholar 

  58. Werthwein A, Bauer U, Nakazi M, Kathmann M, Schlicier E. Further characterization of the ORL1 receptor-mediated inhibition of noradrenaline release in the mouse brain in vitro. Br J Pharmacol 127:300–308;1999.

    Article  PubMed  Google Scholar 

  59. Xu IS, Wiesenfeld-Hallin Z, Xu X-J. [Phe1ψ(CH2-NH)Gly2]nociceptin-(1–13)-NH2, a proposed antagonist of the nociceptin receptor, is a potent and stable agonist in the rat spinal cord. Neurosci Lett 249:127–130;1998.

    Article  PubMed  Google Scholar 

  60. Yaksh TL, Yeung JC, Rudy TA. Systematic examination of the rat of brain sites sensitive to the direct application of morphine: Observation of differential effects within the periaqueductal gray. Brain Res 114:83–103;1976.

    Article  PubMed  Google Scholar 

  61. Zhao CS, Li BS, Zhao GY, Liu HX, Luo F, Wang Y, Tian JH, Chang JK, Han JS. Nocistatin reverses the effect of orphanin FQ/nociceptin in antagonizing morphine analgesia. Neuroreport 10:297–299;1999.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiou, LC. Pharmacological characterization of the nociceptin receptor, ORL1. J Biomed Sci 7, 232–240 (2000). https://doi.org/10.1007/BF02255471

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02255471

Key Words

Navigation