Skip to main content
Log in

Characterization of theugatA gene ofUstilago maydis, isolated by homology to thegatA gene ofAspergillus nidulans

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

A gene encoding a putative GABA aminotransferase (ugatA) was isolated from the basidiomyceteUstilago maydis via heterologous hybridization to the GABA aminotransferase gene (gatA) ofAspergillus nidulans. The derived amino-acid sequence ofugatA shows strong identity throughout the protein to the GABA aminotransferase enzymes fromA. nidulans andSaccharomyces cerevisiae. Northern analysis inU. maydis indicated that theugatA transcript is inducible by the ω-amino acids GABA and β-alanine, and is not subject to nitrogen catabolite repression. With the use ofugatA promoter-lacZ fusion constructs, it was demonstrated that the removal of sequences located approximately 250 by 5′ to the translational start site ofugatA (including multiple copies of a 7-bp direct repeat) resulted in the loss of induction by ω-amino acids. While theugatA gene under the control of theA. nidulans gatA promoter was able to fully complement agatA phenotype inA. nidulans, the full-lengthugatA gene was not, suggesting a lack of expression from theU. maydis promoter inA. nidulans. AU. maydis strain with a gene disruption at theugatA locus showed decreased growth on β-alanine as a sole nitrogen source, but was able to grow on GABA as a sole nitrogen source, indicating an alternative pathway for the utilization of GABA inU. maydis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alic M, Clark EK, Kornegay JR, Gold MH (1990) Transformation ofPhanerochaete chrysosporium andNeurospora crassa with adenine biosynthetic genes fromSchizophyllum commune Curr Genet 17:305–311

    Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Google Scholar 

  • André B, Jauniaux J-C (1990) Nucleotide sequence of the yeastUGA1 gene encoding GABA transaminase. Nucleic Acids Res 18:3049

    Google Scholar 

  • Andrianopoulos A, Hynes MJ (1988) Cloning and analysis of the positively acting regulatory geneamdR fromAspergillus nidulans. Mol Cell Biol 8:3532–3541

    Google Scholar 

  • Arndt K, Fink GR (1986) GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5′ TGACTC 3′ sequences. Proc Natl Acad Sci USA 83:8516–8520

    Google Scholar 

  • Arst HN Jr (1976) Integrator gene inAspergillus nidulans. Nature 262:231–234

    Google Scholar 

  • Arst HN Jr, Penfold HA, Bailey CR (1978) Lactam utilization inAspergillus nidulans: evidence for a fourth gene under the control of the integrator geneintA. Mol Gen Genet 166:321–327

    Google Scholar 

  • Bailey CR, Penfold HA, Arst HN Jr (1979)cis-dominant regulatory mutations affecting the expression of GABA permease inAspergillus nidulans. Mol Gen Genet 169:79–83

    Google Scholar 

  • Banks GR, Shelton PA, Kanuga N, Holden DW, Spanos A (1993) TheUstilago maydis nar1 gene encoding nitrate reductase activity; sequence and transcriptional regulation. Gene 131:69–78

    Google Scholar 

  • Banks GR, Taylor SY (1988) Cloning of thePYR3 gene ofUstilago maydis and its use in DNA transformation. Mol Cell Biol 8:5417–5424

    Google Scholar 

  • Banuett F (1992)Ustilago maydis, the delightful blight. Trends Genet 8:174–180

    Google Scholar 

  • Bauchwitz R, Holloman WK (1990) Isolation of theREC2 gene controlling recombination inUstilago maydis. Gene 96:285–288

    Google Scholar 

  • Bölker M, Urban M, Kahmann R (1992) The a mating-type locus ofU. maydis specifies cell signalling components. Cell 68:441–450

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Casselton LA, de la Fuente Herce A (1989) Heterologous gene expression in the basidiomycete fungusCoprinus cinereus. Curr Genet 16:35–40

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  • Clutterbuck AJ (1984) Loci and linkage map of the filamentous fungusAspergillus nidulans. In: O'Brien SJ (ed) Genetic maps, vol.3. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 265–273

    Google Scholar 

  • Cove DJ (1966) The induction and repression of nitrate reductase in the fungusAspergillus nidulans. Biochem Biophys Acta 133:51–56

    Google Scholar 

  • Cunningham TS, Cooper TG (1991) Expression of theDAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes inSaccharomyces cerevisae, is sensitive to nitrogen catabolite repression. Mol Cell Biol 11:6205–6215

    Google Scholar 

  • Daugherty JR, Rai R, El Berry H, Cooper TG (1993) Regulatory circuit for responses of nitrogen catabolic gene expression to theGLN3 andDAL80 proteins and nitrogen catabolite repression inSaccharomyces cerevisae. J Bacteriol 175:64–73

    Google Scholar 

  • Davis MA, Cobbett CS, Hynes MJ (1988) AnamdS-lacZ fusion for studying gene regulation inAspergillus. Gene 63:199–212

    Google Scholar 

  • De Biase D, Maras B, Bossa F, Barra D, John RA (1992) Protein structure of pig liver 4-aminobutyrate aminotransferase and comparison with a cDNA-deduced sequence. Eur J Biochem 208:351–357

    Google Scholar 

  • Ehinger A, Denison SH, May GS (1990) Sequence, organization and expression of the core histone genes ofAspergillus nidulans. Mol Gen Genet 222:416–424

    Google Scholar 

  • Elder RT, Lou EY, Davis RW (1983) RNA from the yeast transposable element Tyl has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc Natl Acad Sci USA 80:2432–2436

    Google Scholar 

  • Falco SC, Dumas KS, Livak KJ (1985) Nucleotide sequence of the yeastILV2 gene which encodes acetolactate synthase. Nucleic Acids Res 13:4011–4027

    Google Scholar 

  • Fisher HF (1985) Glutamate, glutamine, glutathione and related compounds. Methods Enzymol 113:16–27

    Google Scholar 

  • Fotheringham S, Holloman WK (1990) Pathways of transformation inUstilago maydis determined by DNA conformation. Genetics 124:833–843

    Google Scholar 

  • Fotheringham S, Holloman WK (1991) Extrachromosomal recombination is deranged in therec2 mutant ofUstilago maydis. Genetics 129:1053–1060

    Google Scholar 

  • Froeliger EH, Leong SA (1991) The a mating-type ofUstilago maydis are idiomorphs. Gene 100:113–122

    Google Scholar 

  • Grenson M, Muyldermans F, Broman K, Vissers S (1987) 4-amino-butyric acid (GABA) uptake in Baker's yeastSaccharomyces cerevisiae is mediated by the general amino-acid permease, the proline permease and a GABA-specific permease integrated into the GABA-catabolic pathway. Life Sci Adv 6:35–39

    Google Scholar 

  • Higgins DG, Bleasby AJ, Fuchs R (1992) Clustal V: improved software for multiple sequence alignment. CABIOS 8:189–191

    Google Scholar 

  • Holliday R (1974)Ustilago maydis. In: King RC (ed) Handbook of genetics. Plenum, New York pp 575–595

    Google Scholar 

  • Hynes MJ, Pateman JA (1970) The genetic analysis of regulation of amidase synthesis inAspergillus nidulans. II: Mutants able to utilize acrylamide. Mol Cell Genet 108:97–106

    Google Scholar 

  • Katz ME, Hynes MJ (1989) Characterization of theamdR-control-ledlamA andlamB genes ofAspergillus nidulans. Generics 122:311–339

    Google Scholar 

  • Keon JPR, James CS, Court S, Baden-Daintree C, Bailey AM, Burden RS, Bard M, Hargreaves JA (1994) Isolation of theERG2 gene, encoding sterol87isomerase, from the rice blast fungusMagnaporthe grisea and its expression in the maize smut pathogenUstilago maydis. Curr Genet 25:531–537

    Google Scholar 

  • Kozak M (1984) Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res 12:857–872

    Google Scholar 

  • Kozak M (1987) An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Google Scholar 

  • Kwon O-S, Park J, Churchich JE (1992) Brain 4-aminobutyrate aminotransferase: isolation and sequence of a cDNA encoding the enzyme. J Biol Chem 267:7215–7216

    Google Scholar 

  • Lee SB, Taylor JW (1989) Isolation of DNA from fungal mycelia and single spores. In: Innis MA, Gelford DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc., Harcourt Brace Jovanovich, USA, pp 282–287

    Google Scholar 

  • Lewis CM, Fincham JRS (1970 a) Genetics of nitrate reductase inUstilago maydis. Genet Res 16:151–63

    Google Scholar 

  • Lewis CM, Fincham JRS (1970a) Regulation of nitrate reductase in the basidiomyceteUstilago maydis. J Bacteriol 103:55–61

    Google Scholar 

  • Marck C (1988) ‘DNA Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res 16:1829–1836

    Google Scholar 

  • Oakley CE, Kretz PL, Oakley BR (1987) Cloning of theriboB2 locus ofAspergillus nidulans. Gene 53:293–298

    Google Scholar 

  • Pearson WR, Lipman DJ (1988) Improved tools for biological sequence analysis. Proc Natl Acad Sci USA 85:2444–2448

    Google Scholar 

  • Prestridge DS (1991) SIGNAL SCAN: a computer program that scans DNA sequences for eucaryotic transcriptional elements. CABIOS 7:203–206

    Google Scholar 

  • Ramos F, El Guezzar M, Grenson M, Wiame J-M (1985) Mutations affecting the enzymes involved in the utilization of 4-amino-butyric acid as nitrogen source by the yeastSaccharomyces cerevisae. Eur J Biochem 149:401–404

    Google Scholar 

  • Richardson IB, Hurley SK, Hynes MJ (1989) Cloning and molecular characterization of theamdR controlledgatA gene ofAspergillus nidulans. Mol Cell Genet 217:118–125

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual (2nd edn.) Cold Spring Harbor Laboratory Cold Spring Harbor, New York

    Google Scholar 

  • Spanos A, Kanuga N, Holden DW, Banks GR (1992) TheUstilago maydis pyr3 gene: sequence and transcriptional analysis. Gene 117:73–79

    Google Scholar 

  • Talibi D, Grenson M, André B (1995)Cis- andtrans-acting elements determining induction of the genes of the γ-aminobutyrate (GABA) utilization pathway inSaccharomyces cerevisiae. Nucleic Acids Res 23:550–557

    Google Scholar 

  • Thatcher TH, Gorovosky MA (1994) Phylogenetic analysis of the core histories H2A, H2B, H3 and H4. Nucleic Acid Res 22 174–179

    Google Scholar 

  • Tsukuda T, Carleton S, Fotheringham S, Holloman WK (1988) Isolation and characterization of an autonomously replicating sequence fromUstilago maydis. Mol Cell Biol 8:3703–3709

    Google Scholar 

  • Tsukuda T, Bauchwitz R, Holloman WK (1989) Isolation of theREC1 gene controlling recombination inUstilago maydis. Gene 85:335–341

    Google Scholar 

  • Van Gorcom REM, Punt PJ, Pouwels PH, van den Hondel CAMJJ (1986) A system for the analysis of expression signals inAspergillus. Gene 48:211–217

    Google Scholar 

  • Vissers S, André B, Muyldermans F, Grenson M (1989) Positive and negative regulatory elements control the expression of theUGA4 gene coding for the inducible 4-aminobutyic-acid-specific permease inSaccharomyces cerevisiae. Eur J Biochem 181:357–361

    Google Scholar 

  • Vissers S, André B, Muyldermans F, Grenson M (1990) Induction of 4-aminobutyrate and urea-catabolic pathways inSaccharomyces cerevisiae. Eur J Biochem 187:611–616

    Google Scholar 

  • Wahle E, Keller W (1992) The biochemistry of 3′-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem 61:419–440

    Google Scholar 

  • Wang J, Holden DW, Leong SA (1988) Gene transfer system for the phytopathogenic fungusUstilago maydis. Proc Natl Acad Sci USA 85:865–869

    Google Scholar 

  • Wray JL, Kinghorn JR (eds) (1989) Molecular and genetic aspects of nitrate assimilation Oxford University Press, UK

    Google Scholar 

  • Yonaha K, Nishie M, Minei H, Toyama S (1983) Distribution of ω-amino acid: pyruvate transaminase and aminobutyate: α-ketoglutarate transaminase in microorganisms. Agric Biol Chem 47:2257–2265

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O.C. Yoder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Straffon, M.J., Hynes, M.J. & Davis, M.A. Characterization of theugatA gene ofUstilago maydis, isolated by homology to thegatA gene ofAspergillus nidulans . Curr Genet 29, 360–369 (1996). https://doi.org/10.1007/BF02208617

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02208617

Key words

Navigation