Skip to main content
Log in

Fractal properties of critical invariant curves

  • Short Communications
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We examine the dimension of the invariant measure for some singular circle homeomorphisms for a variety of rotation numbers, through both the thermodynamic formalism and numerical computation. The maps we consider include those induced by the action of the standard map on an invariant curve at the critical parameter value beyond which the curve is destroyed. Our results indicate that the dimension is universal for a given type of singularity and rotation number, and that among all rotation numbers, the golden mean produces the largest dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. R. Artuso, E. Aurell and P. Cvitanovic, Recycling of strange sets: I. Circle expansion, II. Applications,Nonlinearity 3:325–386 (1990).

    Google Scholar 

  2. E. Aurell, On the metric properties of the Feigenbaum attractor,J. Stat. Phys. 47:439–458 (1987).

    Google Scholar 

  3. J. Balatoni and A. Rényi, Remarks on entropy,Publ. Math. Inst. Hung. Acad. Sci. 1:9–40 (1956) [in Hungarian with English summary]; English translation inSelected Papers of Alfréd Rényi, Vol. 1 (Akadémiai Kiadó, Budapest, 1976), pp. 558–586.

    Google Scholar 

  4. G. D. Birkhoff, Sur quelques courbes fermees remarquable,Bull. Soc. Math. France 60 (1932); also inCollected Papers, Vol. II (American Mathematical Society, Providence, Rhode Island, 1950), pp. 444–461.

    Google Scholar 

  5. P. Collet, J. L. Lebowitz, and A. Porzio, The dimension spectrum of some dynamical systems,J. Stat. Phys. 47:609–644 (1987).

    Google Scholar 

  6. J. D. Farmer, E. Ott, and J. A. Yorke, The dimension of chaotic attractors,Physica 7D:153–180 (1983).

    Google Scholar 

  7. M. J. Feigenbaum, Quantitative universality for a class of nonlinear transformations,J. Stat. Phys. 19:25–52 (1978).

    Google Scholar 

  8. M. J. Feigenbaum, The universal metric properties of nonlinear transformations,J. Stat. Phys. 21:669–706 (1979).

    Google Scholar 

  9. M. J. Feigenbaum, L. P. Kadanoff, and S. J Shenker, Quasiperiodicity in dissipative systems: A renormalization group analysis,Physica 5D:370–386 (1982).

    Google Scholar 

  10. J. M. Greene A method for determining a stochastic transition,J. Math. Phys. 20:1183–1201 (1979).

    Google Scholar 

  11. J. Graczyk and G. Świątek, Critical circle maps near bifurcation, SUNY Stony Brook IMS preprint #1991/8.

  12. J. Graczyk and G. Świątek, Singular measures in circle dynamics,Commun. Math. Phys. 157:213–230 (1993).

    Google Scholar 

  13. T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, and B. Shraiman, Fractal measures and their singularities: The characterization of strange sets,Phys. Rev. A 33:1141–1151 (1986).

    Google Scholar 

  14. M. Herman, Sur la conjugasion différentiable des difféomorphismes du cercle à des rotations,Pub. Math. IHES 49:5–233 (1979).

    Google Scholar 

  15. M. Herman, Sur les Courbes Invariantes par les Difféomorphismes de l'Anneau, Vol. 1,Astérisque 103–104 (1983).

  16. Y. Katznelson and D. Ornstein, The differentiability of the conjugation of certain diffeomorphisms of the circle,Ergodic Theory Dynam. Syst. 9:643–680 (1989).

    Google Scholar 

  17. Y. Katznelson and D. Ornstein, A new method for twist theorems,J. Analyse 60:157–208 (1993).

    Google Scholar 

  18. K. M. Khanin, Universal estimates for critical circle mappings,Chaos 1:181–186 (1991).

    Google Scholar 

  19. K. M. Khanin, Rigidity for circle homeomorphisms with the break singularity,Russ. Acad. Sci. Dokl. Math., to appear.

  20. K. M. Khanin and E. B. Vul, Circle homeomorphisms with weak discontinuities,Adv. Sov. Math. 3:57–98 (1991).

    Google Scholar 

  21. R. S. Mackay,Renormalization in Area-Preserving Maps (World Scientific, Singapore, 1993).

    Google Scholar 

  22. A. Osbaldestin and M. Sarkis, Singularity spectrum of a critical KAM torus,J. Phys. A: Math. Gen. 20:L953–958 (1987).

    Google Scholar 

  23. S. Ostlund, D. Rand, J. Sethna, and E. Siggia, Universal properties of the transition from quasi-periodicity to chaos in dissipative systems,Physica 8D:303–342 (1983).

    Google Scholar 

  24. Ya. G. Sinai,Topics in Ergodic Theory (Princeton University Press, Princeton, New Jersey, 1994).

    Google Scholar 

  25. A. Stirnemann, Renormalization for golden circles,Commun. Math. Phys. 152:369–431 (1993).

    Google Scholar 

  26. D. Sullivan, Private communication.

  27. G. Świątek, Rational rotation numbers for maps of the circle,Commun. Math. Phys. 119:109–128 (1988).

    Google Scholar 

  28. E. B. Vul, Ya. G. Sinai, and K. M. Khanin, Feigenbaum universality and the thermodynamic formalism,Russ. Math. Surv. 39:3 (1984).

    Google Scholar 

  29. L.-S. Young, Dimension, entropy and Lyapunov exponents,Ergodic Theory Dynam. Syst. 2:109–124 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. L. Lebowitz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, B.R., Khanin, K.M., Sinai, Y.G. et al. Fractal properties of critical invariant curves. J Stat Phys 85, 261–276 (1996). https://doi.org/10.1007/BF02175565

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02175565

Key Words

Navigation