Skip to main content
Log in

Glassy mean-field dynamics of the backgammon model

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we present an exact study of the relaxation dynamics of the backgammon model. This is a model of a gas of particles in a discrete space which presents glassy phenomena as a result ofentropy barriers in configuration space. The model is simple enough to allow for a complete analytical treatment of the dynamics in infinite dimensions. We first derive a closed equation describing the evolution of the occupation number probabilities, then we generalize the analysis to the study the autocorrelation function. We also consider possible variants of the model which allow us to study the effect of energy barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Gotze, InLiquid, Freezing and the Glass Transition, J. P. Hansen, D. Levesque, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1989).

    Google Scholar 

  2. C. A. Angell, Formation of glasses from liquids and biopolymers,Science 267:1924 (1995).

    Google Scholar 

  3. W. Kauzmann,Chem. Rev. 43:219 (1948).

    Google Scholar 

  4. G. Adam and J. H. Gibbs,J. Chem. Phys. 43:139 (1965).

    Google Scholar 

  5. T. R. Kirkpatrick and P. G. Wolynes,Phys. Rev. B 36:8552 (1987); T. R. Kirkpatrick, D. Thirumalai, and P.G. Wolynes,Phys. Rev. A 40:1045 (1989).

    Google Scholar 

  6. G. Parisi, Gauge theory, spin glasses and real glasses, preprint cond-mat/9411115, and references therein.

  7. W. Van Megen and S. M. Underwood,Phys. Rev. E 49:4206 (1994), and references therein.

    Google Scholar 

  8. E. Follana and F. Ritort, Work in progress.

  9. F. Ritort,Phys. Rev. Lett. 75:1190 (1995).

    Google Scholar 

  10. S. Franz and F. Ritort,Europhys. Lett. 31:507 (1995).

    Google Scholar 

  11. A. Barrat and M. Mezard, Phase-space diffusion and low temperature aging, preprint ENS 95/16;J. Phys. (Paris), to appear.

  12. J. P. Bouchaud, C. Godrèche, and M. Mézard,J. Phys. A: Math. Gen. 28:L603 (1995).

    Google Scholar 

  13. L. L. Bonilla, F. G. Padilla, G. Parisi, and F. Ritort, Analytical solution of the Monte Carlo dynamics of a simple spin-glass model, preprint cond-mat 9508004.

  14. H. Bateman,Tables of Integral Transforms (McGraw-Hill, New York, 1954).

    Google Scholar 

  15. W. H. Press et al.,Numerical Recipes, the Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  16. L. F. Cugliandolo and J. Kurchan,Phys. Rev. Lett. 71:173 (1993);J. Phys. A 27:5749 (1994).

    Google Scholar 

  17. S. Franz and M. Mézard,Europhys. Lett. 26:209 (1994);Physica A 210:48 (1994).

    Google Scholar 

  18. S. Franz and J. Hertz,Phys. Rev. Lett. 74:2114 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, S., Ritort, F. Glassy mean-field dynamics of the backgammon model. J Stat Phys 85, 131–150 (1996). https://doi.org/10.1007/BF02175558

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02175558

Key Words

Navigation