Skip to main content
Log in

Nucleic acid composition, codon usage, and the rate of synonymous substitution in protein-coding genes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Based on the rates of synonymous substitution in 42 protein-codin gene pairs from rat and human, a correlation is shown to exist between the frequency of the nucleotides in all positions of the codon and the synonymous substitution rate. The correlation coefficients were positive for A and T and negative for C and G. This means that AT-rich genes accumulate more synonymous substitutions than GC-rich genes. Biased patterns of mutation could not account for this phenomenon. Thus, the variation in synonymous substitution rates and the resulting unequal codon usage must be the consequence of selection against A and T in synonymous positions. Most of the varition in rates of synonymous substitution can be explained by the nucleotide composition in synonymous positions. Codon-anticodon interactions, dinucleotide frequencies, and contextual factors influence neither the rates of synonymous substitution nor codon usage. Interestingly, the nucleotide in the second position of codons (always a nonsynonymous position) was found to affect the rate of synonymous substitution. This finding links the rate of nonsynonymous substitution with the synonymous rate. Consequently, highly conservative proteins are expected to be encoded by genes that evolve slowly in terms of synonymous substitutions, and are consequently highly biased in their codon usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen RD, Birren BW, Ganz T, Piletz JE, Herschman HR (1983) Molecular cloning of the rat metallothionein 1 (mt-1) mRNA sequence. DNA 2:15–22

    PubMed  Google Scholar 

  • Andersen RD, Birren BW, Taplitz SJ, Herschman HR (1986) Rat metallothionein-1 structural gene and three pseudogenes, one of which contains 5′ regulatory sequences. Mol Cell Biol 6:302–314

    PubMed  Google Scholar 

  • Aota S, Ikemura T (1986) Diversity in G+C content at the third position of codons in vertebrate genes and its cause. Nucleic Acids Res 14:6345–6355 +Erratum 14:8702

    PubMed  Google Scholar 

  • Aota S, Gojobori T, Maruyama T, Ikemura T (1988) Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res 16:r315-r402

    PubMed  Google Scholar 

  • Argentin S, Nemer M, Drouin J, Scott GK, Kennedy BP, Davies PL (1985) The gene for rat atrial natriuretic factor. J Biol Chem 260:4568–4571

    PubMed  Google Scholar 

  • Argos P, Taylor WL, Minth CD, Dixon JE (1983) Nucleotide and amino acid sequence comparisons of preprosomatostatins. J Biol Chem 258:8788–8793

    PubMed  Google Scholar 

  • Ayer D, Yarus M (1986) The context effect does not require a fourth base pair. Science 231:393–395

    PubMed  Google Scholar 

  • Benfield PA, Zivin RA, Miller LS, Sowder R, Smythers GW, Henderson L, Oroszlan S, Pearson ML (1984) Isolation and sequence analysis of cDNA clones coding for rat skeletal muscle creatine kinase. J Biol Chem 259:14979–14984

    PubMed  Google Scholar 

  • Bennetzen JL, Hall BD (1982) Codon selection in yeast. J Biol Chem 257:3026–3031

    PubMed  Google Scholar 

  • Boguski MS, Elshourbagy NA, Taylor JM, Gordon JI (1985) Comparative analysis of repeated sequences in rat apolipoproteins A-I, A-IV and E. Proc Natl Acad Sci USA 82:992–996

    PubMed  Google Scholar 

  • Bulmer M (1987a) A statistical analysis of nucleotide sequences of introns and exons in human genes. Mol Biol Evol 4:395–405

    PubMed  Google Scholar 

  • Bulmer M (1987b) Coevolution of codon usage and transfer RNA abundance Nature 325:728–730

    PubMed  Google Scholar 

  • Bulmer M (1988) Are codon usage patterns in unicellular organisms determined by selection-mutation balance? J Evol Biol 1:15–26

    Google Scholar 

  • Chang ACY, Cochet M, Cohen SN (1980) Structural organization of human genomic DNA encoding the pro-opiomelanocortin peptide. Proc Natl Acad Sci USA 77:4890–4894

    PubMed  Google Scholar 

  • Chang LMS (1973) Low molecular weight deoxyribonucleic acid polymerase from calf thymus chromatin. J Biol Chem 248:6983–6992

    PubMed  Google Scholar 

  • Chen KCK, Chen JS, Johnson JL (1986) Structural features of multiplemifH-like sequences and very biased codon usage in nitrogenase genes ofClostridium pasteurianum. J Bacteriol 166:162–172

    PubMed  Google Scholar 

  • Chin WW, Godine JE, Klein DR, Chang AS, Tan LK, Habener JF (1983) Nucleotide sequence of the cDNA encoding the precursor of the β subunit of rat leutropin. Proc Natl Acad Sci USA 80:4649–4653

    PubMed  Google Scholar 

  • Cooke NE, Baxter JD (1982) Structural analysis of the prolactin gene suggests a separate origin for its 5′ end. Nature 297:603–606

    PubMed  Google Scholar 

  • Cowan NJ, Dobner PR, Fuchs EV, Cleveland DW (1983) Expression of human α-tubulin genes: interspecies conservation of 3′ untranslated regions. Mol Cell Biol 3:1738–1745

    PubMed  Google Scholar 

  • Crabtree GR, Comeau CM, Fowlkes DM, Fornace AJ, Malley JD, Kant JA (1985) Evolution and structure of the fibrinogen genes: random insertion of introns or selective loss? J Mol Biol 185:1–19

    PubMed  Google Scholar 

  • den Dunnen JT, Moormann RJM, Lubsen NH, Schoenmakers JGG (1986) Intron insertions and deletions in the β/γ-crystallin gene family: the rat βB1 gene. Proc Natl Acad Sci USA 83:2855–2859

    PubMed  Google Scholar 

  • Deschenes RJ, Haun RS, Funckes CL, Dixon JE (1985) A gene encoding rat cholecystokinin: isolation, nucleotide sequence and promoter activity. J Biol Chem 260:1280–1286

    PubMed  Google Scholar 

  • Drouin J, Goodman HM (1980) Most of the coding region of rat ACTH-β-LPH precursor gene lacks intervening sequences. Nature 288:610–613

    PubMed  Google Scholar 

  • Dugaiczyk A, Law SW, Dennison OE (1982) Nucleotide sequence and the encoded amino acids of human serum albumin mRNA. Proc Natl Acad Sci USA 79:71–75

    PubMed  Google Scholar 

  • Dull TJ, Gray A, Hayflick JS, Ullrich A (1984) Insulin-like growth factor II precursor gene organization in relation to insulin gene family. Nature 310:777–781

    PubMed  Google Scholar 

  • Fiddes JC, Goodman HM (1981) The gene encoding the common α subunit of the four glycoprotein hormones. J Mol Appl Genet 1:3–18

    PubMed  Google Scholar 

  • Fort PH, Marty L, Piechaczyk M, el Sabrouty S, Dani C, Jeanteur P, Blanchard JM (1985) Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res 13:1431–1442

    PubMed  Google Scholar 

  • Ginzburg I, Behar L, Givol D, Littauer UZ (1981) The nucleotide sequence of rat α-tubulin: 3′-end characteristics, and evolutionary conservation. Nucleic Acids Res 9:2691–2697

    PubMed  Google Scholar 

  • Godine JE, Chin WW, Habener JF (1982) α subunit of rat pituitary glycoprotein hormones. J Biol Chem 257:8368–8371

    PubMed  Google Scholar 

  • Gojobori T, Li WH, Graur D (1982) Patterns of nucleotide substitution in pseudogenes and functional genes. J Mol Evol 18:360–369

    PubMed  Google Scholar 

  • Gouy M, Gautier C (1982) Codon usage in bacteria: correlation with gene expression. Nucleic Acids Res 10:7055–7074

    PubMed  Google Scholar 

  • Graeme IB, Merryweather JP, Sanchez-Pescador RP, Stempien MM, Priestley L, Scott J, Rall LB (1984) Sequence of a cDNA clone encoding human preproinsulin-like growth factor II. Nature 310:775–777

    PubMed  Google Scholar 

  • Graur D (1985) Amino acid composition and the evolutionary rates of protein-coding genes. J Mol Evol 22:53–62

    PubMed  Google Scholar 

  • Graur D, Shuali Y, Li WC (1988) Deletions in processed pseudogenes accumulate faster in rodents than in humans. J Mol Evol (in press)

  • Greenberg BD, Bencen GH, Seilhamer JJ, Lewicki JA, Fiddes JC (1984) Nucleotide sequence of the gene encoding human atrial natriuretic factor precursor. Nature 312:656–658

    PubMed  Google Scholar 

  • Grosjena H, Fiers W (1982) Preferential codon usage in prokaryotic genes: the optimal codon-anticodon interaction energy and the selective codon usage in efficiently expressed genes. Gene 18:199–209

    PubMed  Google Scholar 

  • Grosjean H, Sankoff D, Min Jou W, Fiers W, Cedergren RJ (1978) BacteriophageMS2 RNA: a correlation between the stability of codon-anticodon interaction and the choice of codon words. J Mol Evol 12:113–119

    PubMed  Google Scholar 

  • Hall L, Craig RK, Edbrooke MR, Campbell PN (1982) Comparison of the nucleotide sequence of cloned human and guineapig pre-α lactalbumin cDNA with that of chick pre-lysozyme cDNA suggests evolution from a common ancestral gene. Nucleic Acids Res 10:3503–3515

    PubMed  Google Scholar 

  • Hamada H, Petrino MG, Kakunaga T (1982) Molecular structure and evolutionary origin of human cardiac muscle actin gene. Proc Natl Acad Sci USA 79:5901–5905

    PubMed  Google Scholar 

  • Hanauer A, Mandel JL (1984) The glyceraldehyde-3-phosphate dehydrogenase gene family: structure of a human cDNA and of an X chromosome linked pseudogene; amazing complexity of the gene family in the mouse. EMBO J 3:2627–2633

    PubMed  Google Scholar 

  • Hastings KEM, Emerson CP (1983) Codon usage in muscle genes and liver genes. J Mol Evol 19:214–218

    PubMed  Google Scholar 

  • Hatfield D, Rice M (1986) Aminoacyl-tRNA (anticodon): codon adaptation in human and rabbit reticulocytes. Biochem Int 13:835–842

    PubMed  Google Scholar 

  • Hayashizaki Y, Miyai K, Kato K, Matsubara K (1985) Molecular cloning of human thyrotropin-β subunit gene. FEBS Lett 188:394–400

    PubMed  Google Scholar 

  • Heinrich G, Kronenberg HM, Potts JT, Habener JF (1984) Gene encoding parathyroid hormone: nucleotide sequence of the rat gene deduced amino acid sequence of rat preproparathyroid hormone. J Biol Chem 259:3320–3329

    PubMed  Google Scholar 

  • Hudson P, Haley J, Cronk M, Shine J, Niall H (1981) Molecular cloning and characterization of cDNA sequences coding for rat relaxin. Nature 291:127–131

    PubMed  Google Scholar 

  • Hudson P, John M, Crawford R, Haralambidis J, Scanlon D, Gorman J, Tregear G, Shine J, Niall H (1984) Relaxin gene expression in human ovaries and thepredicted struture of human preprorelaxin by analysis of cDNA clones. EMBO J 3:2333–2339

    PubMed  Google Scholar 

  • Ikemura T (1980) The frequency of codon usage inE. coli genes: correlation with the abundance of cognate tRNA. In: Osawa S, Ozeki H, Uchida H, Yura T (eds) Genetics and evolution of RNA polymerase, tRNA and ribosomes. University of Tokyo Press, Tokyo, pp 519–523

    Google Scholar 

  • Ikemura T (1981a) Correlation between the abundance ofEscherichia coli transfer RNAs and the occurrence of the repetitive codon in protein genes. J Mol Biol 146:1–21

    PubMed  Google Scholar 

  • Ikemura T (1981b) Correlation between the abundance ofEscherichia coli transfer RNAs and the occurrence of the repetitive codon in protein genes: a proposal for a synonymous codon choice that is optimal for theE. coli translational system. J Mol Biol 151:389–409

    PubMed  Google Scholar 

  • Ikemura T (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the repetitive codon in protein genes: differences in synonymous codon choice patterns of yeast andEscherichia coli with references to the abundance of isoacceptor transfer RNAs. J Mol Biol 158:573–579

    PubMed  Google Scholar 

  • Ikemura T (1985) Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol 2:13–34

    PubMed  Google Scholar 

  • Ikemura T, Ozeki H (1983) Codon usage and transfer RNA contents: organism-specific codon choice patterns in reference to isoacceptor contents. Cold Spring Harbor Symp Quant Biol 42:1087–1097

    Google Scholar 

  • Inana G, Totsuka S, Redmond M, Dougherty T, Nagle J, Shiono T, Ohura T, Kominami E, Katunuma N (1986) Molecular cloning of human ornithine aminotransferase mRNA. Proc Natl Acad Sci USA 83:1203–1207

    PubMed  Google Scholar 

  • Jagodzinski LL, Sargent TD, Yang M, Glackin C, Bonner J (1981) Sequence homology between RNAs encoding rat α-fetoprotein and rat serum albumin. Proc Natl Acad Sci USA 78: 3521–3525

    PubMed  Google Scholar 

  • Joh K, Mukai T, Yatsuki H, Hori K (1985) Rat aldolase-A messenger RNA: the nucleotide sequence and multiple mRNA species with different 5′-terminal regions. Gene 39:17–24

    PubMed  Google Scholar 

  • Jukes TH, King JL (1979) Evolutionary nucleotide replacements in DNA. Nature 281:605–606

    PubMed  Google Scholar 

  • Karathanasis SK (1985) Apolipoprotein multigene family: tandem organization of human apolipoprotein AI, CIII, and AIV genes. Proc Natl Acad Sci USA 82:6374–6378

    PubMed  Google Scholar 

  • Karin M, Richards RI (1982) Human metallothionein gene —primary structure of the metallothionein-II gene and a related processed gene. Nature 299:797–802

    PubMed  Google Scholar 

  • Kawakami K, Nojima H, Ohta T, Nagano K (1986) Molecular cloning and sequence analysis of human Na+, K+-ATPase β-subunit. Nucleic Acids Res 14:2833–2844

    PubMed  Google Scholar 

  • Kimura M (1977) Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature 267:275–276

    PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Law SW, Brewer HB (1984) Nucleotide sequence and the encoded amino acids of human apolipoprotein A-I mRNA. Proc Natl Acad Sci USA 81:66–70

    PubMed  Google Scholar 

  • Leibold EA, Munro HN (1987) Characterization and evolution of the expressed rat ferritin light subunit gene and its pseudogene family. J Biol Chem 262:7335–7341

    PubMed  Google Scholar 

  • Li SSL, Fitch WM, Pan YCE, Sharief FS (1983) Evolutionary relationship of vertebrate lactate dehydrogenase isozymes A4 (muscle), B4 (heart), and C4 (testis). J Biol Chem 258:7029–7032

    PubMed  Google Scholar 

  • Li WH, Tanimura M (1987) The molecular clock runs more slowly in man than in apes and monkeys. Nature 326:93–96

    PubMed  Google Scholar 

  • Li WH, Wu CI (1987) Rates of nucleotide substitution are evidently higher in rodents than in man. Mol Biol Evol 4: 74–77

    PubMed  Google Scholar 

  • Li WH, Gojobori T, Nei M (1981) Pseudogenes as a paradigm of neutral evolution. Nature 292:237–239

    PubMed  Google Scholar 

  • Li WH, Wu CI, Luo CC (1984) Nonrandomness of point mutation as reflected in nucleotide substitutions and its evolutionary implications. J Mol Evol 21:58–71

    PubMed  Google Scholar 

  • Li WH, Luo CC, Wu CI (1985a) Evolution of DNA sequences. In: MacIntyre RJ (ed) Molecular evolutionary genetics. Plenum, New York, pp 1–94

    Google Scholar 

  • Li WH, Wu CI, Luo CC (1985b) A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol Biol Evol 2:150–174

    PubMed  Google Scholar 

  • Li WH, Tanimura M, Sharp PM (1987) An evaluation of the molecular clock hypothesis using mammalian DNA sequences. J Mol Evol 25:330–342

    PubMed  Google Scholar 

  • Lipman DJ, Wilbur WJ (1983) Contexual constraints on synonymous codon choice. J Mol Biol 163:363–376

    PubMed  Google Scholar 

  • Loeb LA, Kunkel TA (1982) Fidelity of DNA synthesis. Annu Rev Biochem 52:429–457

    Google Scholar 

  • Lopez LC, Farzier ML, Su CJ, Kumar A, Saunders GF (1983) Mammalian pancreatic preproglucagon contains three glucagon-related peptides. Proc Natl Acad Sci USA 80:5484–5489

    Google Scholar 

  • Luo CC, Li WH, Moore MN, Chan L (1986) Structure and evolution of the apolipoprotein multigene family. J Mol Biol 187:325–340

    PubMed  Google Scholar 

  • MacDonald RJ, Crerar MM, Swain WF, Pictet RL, Thomas G, Rutter WJ (1980) Structure of a family of rat amylase genes. Nature 287:117–122

    PubMed  Google Scholar 

  • Mayer Y, Czosnek H, Zeelon PE, Yaffe D, Nudel U (1984) Expression of the genes coding for the skeletal muscle and cardiac actins in the heart. Nucleic Acids Res 12:1087–1100

    PubMed  Google Scholar 

  • McLean JW, Fukazawa C, Taylor JM (1983) Rat apolipoprotein E mRNA: cloning and sequencing of double-stranded cDNA. J Biol Chem 258:8993–9000

    PubMed  Google Scholar 

  • McLean JW, Elshourbagy NA, Chang DJ, Mahley RW, Taylor JM (1984) Human apolipoprotein E mRNA: cDNA cloning and nucleotide sequence of a new variant. J Biol Chem 259: 6498–6504

    PubMed  Google Scholar 

  • Meakin SO, Breitman ML, Tsui LC (1985) Structural and evolutionary relationships among five members of the human γ-crystallin gene family. Mol Cell Biol 5:1408–1414

    PubMed  Google Scholar 

  • Miyata T, Hayashida H (1981) Extraordinarily high evolutionary rate of pseudogenes: evidence for the presence of selective pressure against changes between synonymous codons. Proc Natl Acad Sci USA 78:5739–5743

    PubMed  Google Scholar 

  • Miyata T, Yasunaga T (1981) Rapidly evolving mouse α-globin-related pseudogene and its evolutionary history. Proc Natl Acad Sci USA 78:450–453

    PubMed  Google Scholar 

  • Miyata T, Yasunaga T, Nishida T (1980) Nucleotide sequence divergence and functional constraint in mRNA evolution. Proc Natl Acad Sci USA 77:7328–7332

    PubMed  Google Scholar 

  • Modrich P (1987) DNA mismatch correction. Annu Rev Biochem 56:435–466

    PubMed  Google Scholar 

  • Morinaga T, Sakai M, Wegmann TG, Tamaoki T (1983) Primary structures of human α-fetoprotein and its mRNA. Proc Natl Acad Sci USA 80:4604–4608

    PubMed  Google Scholar 

  • Moriuchi T, Chang HC, Denome R, Rilver J (1982)Thy-1 cDNA sequence suggests a novel regulatory mechanism. Nature 301:80–82

    Google Scholar 

  • Mouchiroud D (1986) Relation entre la composition en base de l'ADN non codant du gene et la composition en codon. CR Acad Sci Paris 303:743–748

    Google Scholar 

  • Mueckler MM, Pitot HC (1985) Sequence of the precursor to the rat ornithine aminotransferase deduced from a cDNA clone. J Biol Chem 250:12993–12997

    Google Scholar 

  • Nakamura Y, Ogawa M, Nishide T, Emi M, Kosaki G, Himeno S, Matsubara K (1984) Sequences of cDNAs for human salivary and pancreatic α-amylases. Gene 28:263–270

    PubMed  Google Scholar 

  • Newgard CB, Nakano K, Hwang PK, Fletterick RJ (1986) Sequence analysis of the complementary DNA encoding human liver glycogen phosphorylase reveals tissue-specific codon usage. Proc Natl Acad Sci USA 83:8132–8136

    PubMed  Google Scholar 

  • Ng SY, Gunning P, Eddy R, Ponte P, Leavitt J, Shows T, Kedes L (1985) Evolution of the functional human β-actin gene and its multipseudogene family: conservation of noncoding regions and chromosomal dispersion of pseudogenes. Mol Cell Biol 5:2720–2732

    PubMed  Google Scholar 

  • Nichols BP, Miozzari GF, van Cleemput M, Bennett GM, Yanofsky C (1980) Nucleotide sequences of thetrpG regions ofEscherichia coli, Shigella dysenteriae, Salmonella typhimurium andSerratia marcescens. J Mol Biol 142:503

    PubMed  Google Scholar 

  • Nie NH, Hadlaihull C, Jenkins JG, Steinbrenner K, Bent DH (1975) SPSS. McGraw-Hill, New York

    Google Scholar 

  • Nudel U, Zakut R, Shani M, Neuman S, Levy Z, Yaffe D (1983) The nucleotide sequence of the rat cytoplasmic β-actin gene. Nucleic Acids Res 11:1759–1771

    PubMed  Google Scholar 

  • Nussinov R (1981) Eukaryotic dinucleotide preference rules and their implications for degenerate codon usage. J Mol Biol 149:125–131

    PubMed  Google Scholar 

  • Osawa S, Chiu RH, McDonough A, Miller TB, Johnson GL (1986) Isolation of partial cDNAs for rat liver and muscle glycogen phosphorylase isozymes. FEBS Lett 202:282–288

    PubMed  Google Scholar 

  • Ouenzar B, Agoutin B, Reinisch F, Weill D, Perin F, Keith G, Heyman T (1988) Distribution of isoaccepting tRNAs and codons for proline and glycine in collagenous and noncollagenous chicken tissues. Biochem Biophys Res Commun 150: 148–155

    PubMed  Google Scholar 

  • Page GS, Smith S, Goodman GM (1981) DNA sequence of the rat growth hormone gene: location of the 5′ terminus of the growth hormone mRNA and identification of an internal transposon-like element. Nucleic Acids Res 9:2087–2104

    PubMed  Google Scholar 

  • Perryman MB, Kerner SA, Bohlmeyer TJ, Roberts R (1986) Isolation and sequence analysis of a full-length cDNA for human M creatine kinase. Biochem Biophys Res Commun 140:981–989

    PubMed  Google Scholar 

  • Precup J, Parker J (1987) Missense misreading of asparagine codons as a function of codon identity and context. J Biol Chem 262:11351–11355

    PubMed  Google Scholar 

  • Qasba PK, Safaya SK (1984) Similarity of the nucleotide sequences of rat α-lactalbumin and chicken lysozyme gene. Nature 303:377–380

    Google Scholar 

  • Rixon MW, Chan WY, Davie EW, Chung DW (1983) Characterization of a complementary deoxyribonucleic acid coding for the α-chain of human fibrinogen. Biochemistry 22: 3237–3244

    PubMed  Google Scholar 

  • Rosenberger RF, Hilton J (1983) The frequency of transcriptional and translational errors at nonsense codons in thelacZ gene ofEscherichia coli. Mol Gen Genet 191:207–212

    PubMed  Google Scholar 

  • Roskam WG, Rougeon F (1979) Molecular cloning and nucleotide sequence of the human growth hormone structural gene. Nucleic Acids Res 7:305–320

    PubMed  Google Scholar 

  • Rottmann WH, Tolan DR, Penhoet EE (1984) Complete amino acid sequence for human aldolase B derived from cDNA and genomic clones. Proc Natl Acad Sci USA 81:2738–2742

    PubMed  Google Scholar 

  • Sakakibara M, Mukai T, Hori K (1985) Nucleotide sequence of a cDNA clone for human aldolase: a messenger RNA in the liver. Biochem Biophys Res Commun 131:413–420

    PubMed  Google Scholar 

  • Santoro C, Marone M, Ferrone M, Costanzo F, Colombo M, Minganti C, Cortese R, Silengo L (1986) Cloning of the gene coding for human L apoferritin. Nucleic Acids Res 14:721–735

    PubMed  Google Scholar 

  • Sargent TD, Yang M, Booner J (1981) Nucleotide sequence of cloned rat serum albumin messenger RNA. Proc Natl Acad Sci USA 78:243–246

    PubMed  Google Scholar 

  • Sausville E, Carney D, Battey J (1985) The human vasopressin gene is linked to the oxytocin gene and is selectively expressed in a cultured lung cancer cell line. J Biol Chem 260:10236–10241

    PubMed  Google Scholar 

  • Sharp PM, Li WH (1987a) The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias. Mol Biol Evol 4:222–230

    PubMed  Google Scholar 

  • Sharp PM, Li WH (1987b) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1294

    PubMed  Google Scholar 

  • Shen LP, Pictet RL, Rutter WJ (1982) Human somatostatin sequence of the cDNA. Proc Natl Acad Sci USA 79:4575–4579

    PubMed  Google Scholar 

  • Shpaer EG (1986) Constraint on codon context inEscherichia coli genes. Their possible role in modulating the efficiency of translation. J Mol Biol 188:555–564

    PubMed  Google Scholar 

  • Soares MB, Schon E, Henderson A, Karathanasis SK, Cate R, Zeitlin S, Chirgwin J, Efstratiadis A (1985) RNA-mediated duplication: the rat preproinsulin I gene is a functional retroposon. Mol Cell Biol 5:2090–2103

    PubMed  Google Scholar 

  • Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657

    PubMed  Google Scholar 

  • Sullivan KF, Havercroft JC, Cleveland DW (1984) Primary structure and expression of a vertebrate β-tubulin gene family. In: Dorisy GG, Cleveland DW, Murphy DW (eds) Molecular biology of the cytoskeleton. Cold Spring Harbor Press. Cold Spring Harbor NY, pp 321–332

    Google Scholar 

  • Sundelin J, Melhus H, Das S, Eriksson U, Lind P, Traegardh L, Peterson PA, Rask L (1985) The primary structure of rabbit and rat prealbumin and a comparison with the tertiary structure of human prealbumin. J Biol Chem 260:6481–6487

    PubMed  Google Scholar 

  • Tajimi F, Nei M (1982) Biases of the estimates of DNA divergence obtained by the restriction enzyme technique. J Mol Evol 18:115–120

    PubMed  Google Scholar 

  • Takahashi Y, Kato K, Hayashizaki Y, Wakabayash T, Ohtsuka E, Matsuki S, Ikehara M, Matsubara K (1985) Molecular cloning of the human cholecystokinin gene by use of synthetic probe containing deoxyinosine. Proc Natl Acad Sci USA 82: 1931–1935

    PubMed  Google Scholar 

  • Truong AT, Duez C, Belayew A, Renard A, Pictet R, Bell GI, Martial JA (1984) Isolation and characterization of human prolactin gene. EMBO J 3:429–437

    PubMed  Google Scholar 

  • Tsujibo H, Tiano HF, Li SSL (1985) Nucleotide sequence of the cDNA and an intronless pseudogene for human lactate dehydrogenase-A isozyme Eur J Biochem 147:9–15

    PubMed  Google Scholar 

  • Tsutsumi KI, Mukai T, Hidaka S, Miyahara H, Tsutsumi R, Tanaka T, Hori K, Ishikawa K (1983) Rat aldolase isozyme gene: cloning and characterization of cDNA for aldolase B messenger RNA. J Biol Chem 258:6537–6542

    PubMed  Google Scholar 

  • Ullrich A, Dull TJ, Gray A, Brosius J, Sures I (1980) Genetic variation in the human insulin gene. Science 209:612–615

    PubMed  Google Scholar 

  • van Rijs J, Giruere V, Hurst J, van Agthoven T, van Kessel AD, Goyert S, Grosveld F (1985) Chromosomal localization of humanthy-1 gene. Proc Natl Acad Sci USA 82:5832–5835

    PubMed  Google Scholar 

  • Varenne S, Buc J, Lloubes R, Lazdunski C (1984) Translation in a nonuniform process: effect of tRNA availability on the rate of elongation of nascent polypeptide chains. J Mol Biol 180:549–576

    PubMed  Google Scholar 

  • Varshney U, Gedamu L (1984) Human metallothionein MT-I and MT-II processed genes. Gene 31:135–145

    PubMed  Google Scholar 

  • Vasicek TJ, McCevitt BE, Freeman MW, Fennick BJ, Hendy GN, Potts JT, Rich A, Kronenberg HM (1983) Nucleotide sequence of the human parathyroid hormone gene. Proc Natl Acad Sci USA 80:2127–2131

    PubMed  Google Scholar 

  • Wain-Hobson S, Nussinov R, Brown RJ, Sussman JL (1981) Preferential codon usage in genes. Gene 13:335–364

    Google Scholar 

  • Wallace MR, Naylor SL, Kluve-Beckerman, B, Long GL, McDonald L, Shows TB, Benson MD (1985) Localization of the human prealbumin gene to chromosome 18. Biochem Biophys Res Commun 129:753–758

    PubMed  Google Scholar 

  • Wells D, Bauis W, Kedes L (1986) Codon usage in histone gene families of higher eukaryotes reflects functional rather than phylogenetic relationships. J Mol Evol 23:224–241

    PubMed  Google Scholar 

  • White JW, Saunders GF (1986) Structure of the human glucagon gene. Nucleic Acids Res 14:4719–4730

    PubMed  Google Scholar 

  • Wilbur WJ, Lipman DJ (1985) Rapid similarity searches of nucleic acid and protein data banks. Proc Natl Acad Sci USA 80:726–730

    Google Scholar 

  • Wilde CD, Crowther CE, Cripe TP, Gwo-Shu Lee M, Cowan NJ (1982) Evidence that a human β-tubulin pseudogene is derived from its corresponding mRNA. Nature 297:83–84

    PubMed  Google Scholar 

  • Wright S (1969) Evolution and genetics of populations, vol 2. University of Chicago Press, Chicago

    Google Scholar 

  • Wu CI, Li WH (1985) Evidence for higher rates in rodents than in man. Proc Natl Acad Sci USA 82:1741–1745

    PubMed  Google Scholar 

  • Yanofsky C, van Cleemput M (1982) Nucleotide sequence of trpE ofSalmonella typhimurium and its homology with the corresponding sequence ofEscherichia coli. J Mol Biol 155: 235–246

    PubMed  Google Scholar 

  • Young RM, Shull GE, Lingrel JB (1987) Multiple mRNAs from rat kidney and brain encode a single Na+, K+-ATPase β-subunit protein. J Biol Chem 262:4905–4910

    PubMed  Google Scholar 

  • Zuckerkandl E (1965) Remarques sur l'évolution des polynucléotides comparée à celle des polypeptides. Bull Soc Chim Biol 47:1729–1730

    PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Molecules as documents of evolutionary history. J Theor Biol 8:357–366

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ticher, A., Graur, D. Nucleic acid composition, codon usage, and the rate of synonymous substitution in protein-coding genes. J Mol Evol 28, 286–298 (1989). https://doi.org/10.1007/BF02103424

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02103424

Key words

Navigation