Skip to main content
Log in

Optical measurements of thermal diffusivity of a material

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The measurement of thermal diffusivity of a material (in particular, a thin film) is important for various reasons, e.g., to predict the heat transfer in the solid subjected to a thermal process, to monitor surface composition or morphology, or to detect invisible subsurface defects like delaminations. This measurement can be done in a noncontact manner using various photothermal methods. Such methods typically involve pulsed heating of the surface by small amounts using a laser source; the decay of the surface temperature after this pulsed photothermal heating is then probed to provide the thermal diffusivity. Various probing methods have been developed in the literature, including the probing of reflection, refraction, and diffraction from the pulsed heated area, infrared thermal radiometry, and surface deformation. This paper provides an overview of such techniques and some examples of their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott,J. Appl. Phys. 32:1679 (1961).

    Google Scholar 

  2. J. Jáuregui and E. Matthias,Appl. Phys. A 54:35 (1992).

    Google Scholar 

  3. A. Harata, H. Nishimura, and T. Sawada,Appl. Phys. Lett. 57:132 (1990).

    Google Scholar 

  4. C. D. Marshall, I. M. Fishman, R. C. Dorfman, C. B. Eom, and M. D. Fayer,Phys. Rev. B 45:10009 (1992).

    Google Scholar 

  5. M. A. Olmstead, N. M. Amer, S. Kohn, F. Fournier, and A. C. Boccara,Appl. Phys. A 32:141 (1983).

    Google Scholar 

  6. S. V. Vintsents and V. B. Sandomirskii,Phys. Stat. Sol. 133:K7 (1992).

    Google Scholar 

  7. B. C. Li,J. Appl. Phys. 68:482 (1990).

    Google Scholar 

  8. A. C. Tam,Rev. Mod. Phys. 58:381 (1986).

    Google Scholar 

  9. A. C. Tam, inPhotothermal Investigations of Solids and Fluids, J. A. Sell, ed. (Academic Press, London, 1988), pp. 1–34.

    Google Scholar 

  10. H. Sontag and A. C. Tam,IEEE Trans. UFFC 33:500 (1986).

    Google Scholar 

  11. J.-P. Monchalin,IEEE Trans. UFFC 33:485 (1986).

    Google Scholar 

  12. S. V. Egerev, L. M. Lyamshev, and O. V. Puchenkov,Sov. Phys. Usp. 33:739 (1991).

    Google Scholar 

  13. J. Rantala, L. Wei, P. K. Kuo, J. Jaarinen, M. Luukkala, and R. L. Thomas,J. Appl. Phys. 73:2714 (1993).

    Google Scholar 

  14. M. J. D. Low, C. Morterra, and J. M. Khosrofian,IEEE Trans. UFFC 33:573 (1986).

    Google Scholar 

  15. J. C. Loulergue and A. C. Tam,Appl. Phys. Lett. 46:457 (1985).

    Google Scholar 

  16. P. Korpiun and R. Osiander, inPhotoacoustic and Photothermal Phenomena III, D. Bicanic, ed. (Springer-Verlag, Berlin, 1991), pp. 619–627.

    Google Scholar 

  17. J. Rantala, J. Jaarinen, and P. K. Kuo,Appl. Phys. A 55:586 (1992).

    Google Scholar 

  18. T.-C. Ma, M. Munidasa, and A. Mandelis,J. Appl. Phys. 71:6029 (1992).

    Google Scholar 

  19. G. Busse and H. G. Walther, inPrinciples and Perspectives of Photothermal and Photoacoustic Phenomena, A. Mandelis, ed. (Elsevier, New York, 1992), pp. 205–298.

    Google Scholar 

  20. W. P. Leung and A. C. Tam,J. Appl. Phys. 56:153 (1984).

    Google Scholar 

  21. C. P. Grigoropoulos, H. K. Park, and X. Xu,Int. J. Heat Mass Transf. 36:919 (1993).

    Google Scholar 

  22. A. Salazar, A. Sánchez-Lavega, and J. Fernández,J. Appl. Phys. 69:1216 (1991).

    Google Scholar 

  23. A. Salazar, A. Sánchez-Lavega, and J. Fernández,J. Appl. Phys. 65:4150 (1989).

    Google Scholar 

  24. H. M. James,J. Appl. Phys. 51:4666 (1980).

    Google Scholar 

  25. R. Emmerich, S. Bauer, and B. Ploss,Appl. Phys. A 54:334 (1992).

    Google Scholar 

  26. H. S. Carslaw and J. C. Jaeger,Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, 1959).

    Google Scholar 

  27. R. C. Weast,CRC Handbook of Chemistry and Physics, 68th ed. (CRC Press, Boca Raton, FL, 1987).

    Google Scholar 

  28. W. P. Leung and A. C. Tam,Opt. Lett. 9:93 (1984).

    Google Scholar 

  29. A. C. Tam and B. Sullivan,Appl. Phys. Lett. 43:333 (1983).

    Google Scholar 

  30. A. C. Tam,Infrared Phys. 25:305 (1985).

    Google Scholar 

  31. S. O. Kanstad and P.-E. Nordal,Can. J. Phys. 64:1155 (1986).

    Google Scholar 

  32. P.-E. Nordal and S. O. Kanstad,Infrared Phys. 25:295 (1985).

    Google Scholar 

  33. H. Otah, G. Ogura, Y. Waseda, and M. Suzuki,Rev. Sci. Instrum. 61:2645 (1990).

    Google Scholar 

  34. Z. Chen and A. Mandelis,Phys. Rev. B 46:13526 (1992).

    Google Scholar 

  35. C. S. Welch, D. M. Heath, and W. P. Winfree,J. Appl. Phys. 61:895 (1987).

    Google Scholar 

  36. D. Fournier, C. Boccara, A. Skumanich, and N. M. Amer,J. Appl. Phys. 59:787 (1986).

    Google Scholar 

  37. J. D. Spear and R. E. Russo,J. Appl. Phys. 70:580 (1991).

    Google Scholar 

  38. R. Gupta, inPhotothermal Investigations of Solids and Fluids, J. A. Sell, ed. (Academic Press, London, 1988), pp. 112–126.

    Google Scholar 

  39. H. Sontag and A. C. Tam,Opt. Lett. 10:436 (1985).

    Google Scholar 

  40. J. Shen, R. D. Lowe, and R. D. Snook,Chem. Phys. 165:385 (1992).

    Google Scholar 

  41. J. Opsal, A. Rosencwaig, and D. L. Willenborg,Appl. Opt. 22:3169 (1983).

    Google Scholar 

  42. J. C. Murphy and L. C. Aamodt,J. Appl. Phys. 51:4580 (1980).

    Google Scholar 

  43. K. Hane and S. Hattori,Appl. Opt. 29:145 (1990).

    Google Scholar 

  44. G. Rousset, F. Lepoutre, and L. Bertrand,J. Appl. Phys. 54:2283 (1983).

    Google Scholar 

  45. A. Skumanich, H. Dersch, M. Fathallah, and N. M. Amer,Appl. Phys. A 43:297 (1987).

    Google Scholar 

  46. A. C. Boccara, D. Fournier, and J. Badoz,Appl. Phys. Lett. 36:130 (1980).

    Google Scholar 

  47. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier,Appl. Opt. 20:1333 (1981).

    Google Scholar 

  48. L. C. Aamodt and J. C. Murphy,J. Appl. Phys. 52:4903 (1981).

    Google Scholar 

  49. L. C. Aamodt and J. C. Murphy,J. Appl. Phys. 54:581 (1983).

    Google Scholar 

  50. M. Munidasa and A. Mandelis, inPrinciples and Perspectives of Photothermal and Photoacoustic Phenomena, A. Mandelis, ed. (Elsevier, New York, 1992), pp. 299–367.

    Google Scholar 

  51. P. K. Kuo, M. J. Lin, C. B. Reyes, L. D. Favro, R. L. Thomas, D. S. Kim, S.-Y. Zhang, L. J. Inglehart, D. Fournier, A. C. Boccara, and N. Yacoubi,Can. J. Phys. 64:1165 (1986).

    Google Scholar 

  52. P. K. Kuo, E. D. Sendler, L. D. Favro, and R. L. Thomas,Can. J. Phys. 64:1168 (1986).

    Google Scholar 

  53. F. Charbonnier and D. Fournier,Rev. Sci. Instrum. 57:1126 (1986).

    Google Scholar 

  54. A. C. Tam, inPhotoacoustic and Photothermal Phenomena III, D. Bicanic, ed. (Springer-Verlag, Berlin, 1991), pp. 447–462.

    Google Scholar 

  55. G. E. Jellison, Jr., D. H. Lowndes, D. N. Mashburn, and R. F. Wood,Phys. Rev. B 34:2407 (1986).

    Google Scholar 

  56. I. A. Vitkin, C. Christofides, and A. Mandelis,J. Appl. Phys. 67:2822 (1990).

    Google Scholar 

  57. D. H. Lowndes,Phys. Rev. Lett. 48:267 (1982).

    Google Scholar 

  58. L. A. Lompré, J. M. Liu, H. Kurz, and N. Bloembergen,Appl. Phys. Lett. 43:168 (1983).

    Google Scholar 

  59. C. A. Paddock and G. L. Eesley,J. Appl. Phys. 60:285 (1986).

    Google Scholar 

  60. H. K. Park, X. Xu, C. P. Grigoropoulos, N. Do, L. Klees, P. T. Leung, and A. C. Tam,Appl. Phys. Lett. 61:749 (1992).

    Google Scholar 

  61. W. T. Walter,Proc. SPIE 198:109 (1979).

    Google Scholar 

  62. S. D. Brorson, J. G. Fujimoto, and E. P. Ippen,Phys. Rev. Lett. 59:1962 (1987).

    Google Scholar 

  63. H. Kempkens, W. W. Byszewski, P. D. Gregor, and W. P. Lapatovich,J. Appl. Phys. 67:3618 (1990).

    Google Scholar 

  64. D. Guidotti and H. M. van Driel,Appl. Phys. Lett. 47:1336 (1985).

    Google Scholar 

  65. G. Eesley, B. M. Clemens, and C. A. Paddock,Appl. Phys. Lett. 50:717 (1987).

    Google Scholar 

  66. K. L. Saenger,J. Appl. Phys. 65:1447 (1989).

    Google Scholar 

  67. X. Xu, S. L. Taylor, H. K. Park, and C. P. Grigoropoulos,J. Appl. Phys. 73:8088 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H.K., Grigoropoulos, C.P. & Tam, A.C. Optical measurements of thermal diffusivity of a material. Int J Thermophys 16, 973–995 (1995). https://doi.org/10.1007/BF02093477

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02093477

Key words

Navigation