Skip to main content
Log in

Current issues in heavy fermion superconductivity

  • Session 3. Heavy Fermion Systems
  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

An attempt is made to summarize our current understanding of the superconductivity occuring in heavy fermion systems. The last three years have seen the discovery of two new superconductors (UNi2Al3 and UPd2Al3), much more use of directional probes to investigate the anisotropy of the gap structure, further experimental and theoretical inquiry into a possible coupling of magnetic and superconducting order parameters, wider application of pressure and uniaxial stress to examine the onset of ordering and some new indications of unconventional superconductivity. These topics will be reviewed along with others of current interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For an overview of recent developments in the study of gap anisotropy in high T c superconductors, see: PHYSICS TODAY, May 1993, p.17.

  2. L. Taillefer, et al., Physica (Amsterdam)169B (1991) 257.

    Google Scholar 

  3. N. Grewe and F. Steglich, in:Handbook on the Physics and Chemistry of Rare Earths, vol. 14, ed. Gschneidner et al. (Elsevier, Amsterdam, 1991) pp. 343–474.

    Google Scholar 

  4. M. Sigrist and K. Ueda, Rev. Mod. Phys.63 (1991) 239.

    Google Scholar 

  5. D. Jaccard et al., Phys. Lett.A

  6. H. Ott et al., Phys. Rev.B33 (1986) 126.

    Google Scholar 

  7. E. Felder et al., PhysicaC162–164 (1989) 429.

    Google Scholar 

  8. R.H. Heffner et al., Phys. Rev.B40 (1989) 806.

    Google Scholar 

  9. U. Rauchschwalbe et al. Europhys. Lett.3 (1987) 757.

    Google Scholar 

  10. K. Hasselbach et al. Phys. Rev. Lett.63 (1989) 93.

    Google Scholar 

  11. B. Bogenberger et al., to be published.

  12. K. Hasselbach et al., J. Low Temp. Phys.81 (1990) 299.

    Google Scholar 

  13. N.H. van Dijk et al., to appear in J. Low Temp. Phys.

  14. S. Adenwalla et al., Phys. Rev. Lett.65 (1990) 2298.

    Google Scholar 

  15. G. Bruls et al., Phys. Rev. Lett.65 (1990) 2294.

    Google Scholar 

  16. S.K. Yip et al., Phys. Rev.B43 (1991) 2742.

    Google Scholar 

  17. S. Adenwalla et al., Phys. rev.B46 (1992) 9070.

    Google Scholar 

  18. H. von Löhneysen et al., J. Mag. Mag. Mat.108 (1992) 49; T. Trappmann et al., Phys. Rev.B43 (1991) 13714.

    Google Scholar 

  19. G. Aeppli et al., Phys. Rev. Lett.63 (1989) 676.

    Google Scholar 

  20. S.M. Hayden et al., Phys. Rev.B46 (1992) 8675.

    Google Scholar 

  21. D.W. Hess et al., J. Phys. Cond. Matter1 (1989) 8135; K. Machida et al., J. Phys. Soc. Jpn.58 (1989) 4116.

    Google Scholar 

  22. K. Machida et al., J. Phys. Soc. Jpn.62 (1993) 680.

    Google Scholar 

  23. G. Luke et al., the Proceedings of this Conference.

  24. P.A. Midgley et al., Phys. Rev. Lett.70 (1993) 678.

    Google Scholar 

  25. K. Behnia et al., J. Low Temp. Phys.84 (1991) 261.

    Google Scholar 

  26. B.S. Shivaram et al., Phys. Rev. Lett.57 (1986) 1259.

    Google Scholar 

  27. R.N. Kleiman et al., Phys. Rev. Lett.69 (1992) 3120.

    Google Scholar 

  28. C. Broholm et al., Phys. Rev. Lett.65 (1990) 2062.

    Google Scholar 

  29. F. Gross-Alltag et al., Z. Phys.B82 (1991) 243.

    Google Scholar 

  30. P.J.C. Signore et al., Phys. Rev.B45 (1992) 10151.

    Google Scholar 

  31. B. Arfi et al., Phys. Rev.B39 (1989) 8959.

    Google Scholar 

  32. P. Thalmeier et al., J. Mag. Mag. Mat.108 (1992) 109.

    Google Scholar 

  33. B.S. Shivaram et al., Phys. Rev. Lett.56 (1986) 1078.

    Google Scholar 

  34. K. Behnia et al., Phys. Lett.A (1992).

  35. G. Goll et al., Phys. Rev. Lett.70 (1993) 2008.

    Google Scholar 

  36. Y. De Wilde et al., to be published.

  37. K. Hasselbach et al., Phys. Lett.A156 (1991) 313.

    Google Scholar 

  38. C. Broholm et al., Phys. Rev.B43 (1991) 12809.

    Google Scholar 

  39. K. Hasselbach et al., Phys. Rev.B47 (1993) 509.

    Google Scholar 

  40. C. Geibel et al., Z. Phys.B83 (1991) 305.

    Google Scholar 

  41. C. Geibel et al., Z. Phys.B84 (1991) 1.

    Google Scholar 

  42. A. Schröder et al., to be published.

  43. A. Krimmel et al., Z. Phys.B86 (1992) 161.

    Google Scholar 

  44. T.E. Mason et al., to be published.

  45. N. Sato et al., J. Phys. Soc. Jpn.61 (1992) 32.

    Google Scholar 

  46. C. Geibel et al., PhysicaC185–189 (1991) 2651.

    Google Scholar 

  47. A. Amato et al., Europhys. Lett.19 (1992) 127.

    Google Scholar 

  48. K. Gloos et al., Phys. Rev. Lett.70 (1993) 501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taillefer, L. Current issues in heavy fermion superconductivity. Hyperfine Interact 85, 379–396 (1994). https://doi.org/10.1007/BF02069450

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02069450

Keywords

Navigation