Skip to main content
Log in

Progress in the genetic manipulation of crops aimed at changing starch structure and increasing starch accumulation

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

The starch content and its composition have important consequences for the yield of the harvested crop and the materials extracted from it. The functional properties of the foods or other processed materials derived from these crops are also affected by the structure and composition of the starch. Recently, genetic engineering has been used to produce plants with an elevated starch content, achieved by transforming the plant with a mutated bacterial gene coding for an ADPglucose pyrophosphorylase that is active in the presence of metabolites which inhibit the plant enzyme. Besides the practical implications of these results, this experiment provided direct evidence for the regulatory role of the ADPglucose pyrophosphorylase in starch synthesis. Other bacterial enzymes, such as glycogen synthase and branching enzyme, could be introduced in order to modify starch structure. However, a more elegant (but longer-term) approach would be to learn enough about the structure-function relationships of the plant enzymes so that the product of their action could be changed. To achieve this objective, much more will have to be learned about the enzymes involved in the biosynthesis of starch than is presently known. Here, the basic properties of starch and the current research approaches to understanding its biosynthesis are described, together with a perspective of how genetic manipulation of starch structure may be achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Booma, S. E. Selke, and J. R. Giacin (1994)J. Elastomers Plastics 26 104–142.

    Google Scholar 

  2. G. F. Fanta and W. M. Doane (1986) in O. B. Wurzburg (Ed.),Modified Starches: Properties and Uses, CRC Press, Boca Raton, FL, pp. 149–178.

    Google Scholar 

  3. J. Preiss (1988) inThe Biochemistry of Plants, Vol. 14, Academic Press, New York, pp. 181–254.

    Google Scholar 

  4. J. Preiss (1991) in J. Miflin (Ed.),Oxford Surveys of Plant Molecular and Cell Biology, Vol. 7, pp. 59–114.

  5. M. N. Sivak and J. Preiss (1995) in J. Kigel and G. Galili (Eds.),Seed Development and Germination, Marcel Dekker, New York, pp. 139–168.

    Google Scholar 

  6. R. L. Whistler and J. R. Daniel (1984) in R. L. Whistler, J. N. Bemiller, and E. F. Paschall (Eds.),Starch Chemistry and Technology, Academic Press, New York, pp. 153–182.

    Google Scholar 

  7. D. French (1984) in R. L. Whistler, J. N. BeMiller, and E. F. Paschall (Eds.),Starch Chemistry and Technology, Academic Press, New York, pp. 183–247.

    Google Scholar 

  8. W. R. Morrison and J. Karkalas (1990). In P. M. Dey (ed.),Methods in Plant Biochemistry, Vol. 2, Academic Press, San Diego, pp. 323–352.

    Google Scholar 

  9. J. P. Robin, C. Mercier, R. Charbonniere, and A. Guibot (1974)Cereal Chem. 51 389–406.

    Google Scholar 

  10. D. J. Manners and N. K. Matheson (1981)Carbohydr. Res. 90 99–110.

    Google Scholar 

  11. S. Hizukuri (1986)Carbohydr. Res. 147 342–347.

    Google Scholar 

  12. D. M. Stark, K. P. Timmerman, G. F. Barry, J. Preis, and G. M. Kishore (1992)Science 258 287–292.

    Google Scholar 

  13. T. Okita (1992)Plant Physiol. 100 560–564.

    Google Scholar 

  14. J. Preiss and C. Levi (1980) in J. Preiss (Ed.),The Biochemistry of Plants, Vol. 3, Academic Press, New York, pp. 371–423.

    Google Scholar 

  15. T. Romeo and J. Preiss (1989)J. Bacteriol. 171 2773–2782.

    PubMed  Google Scholar 

  16. J. Preiss and T. Romeo (1989)Adv. Microbial. Physiol. 30 183–238.

    Google Scholar 

  17. J. Preiss, M. Bloom, M. Morell, V. Knowles, W. C. Plaxton, T. W. Okita, R. Larsen, A. C. Harmon, and C. Putnam-Evans (1987) in G. Bruening, J. Harada, T. Kosuge, and Hollaender (Eds.),Tailoring Genes for Crop Improvement. An Agricultural Perspective, Plenum Press, New York, pp. 133–152.

    Google Scholar 

  18. J. Preiss, M. Morell, B. Bloom, V. L. Knowles, and T. P. Lin (1987) in J. Biggins (Eds.),Progress in Photosynthesis Research, Vol. III, Nijhoff, The Hague, pp. 693–700.

    Google Scholar 

  19. M. K. Morell, M. Bloom, V. Knowles, and J. Preiss (1987)Plant Physiol. 85 185–187.

    Google Scholar 

  20. M. Morell, M. Bloom, R. Larsen, T. W. Okita, and J. Preiss (1987) in J. L. Key, and L. McIntosh, (Eds.),Plant Gene Systems and Their Biology, Alan R. Liss, New York, pp. 227–242.

    Google Scholar 

  21. J. Preiss (1984)Annu. Rev. Microbiol. 38 419–458.

    PubMed  Google Scholar 

  22. J. Preiss and T. Romeo (1994)Progr. Nucleic Acid Res. Mol. Biol. 47 299–329.

    Google Scholar 

  23. A. A. Iglesias, G. Kakefuda, and J. Preiss (1991)Plant Physiol. 97 1187–1195.

    Google Scholar 

  24. J. L. Ozbun, J. S. Hawker, and J. Preiss (1971)Biochem. Biophys. Res. Commun. 43 631–636.

    PubMed  Google Scholar 

  25. F. D. Macdonald and J. Preiss (1985)Plant Physiol. 78 849–852.

    Google Scholar 

  26. O. E. Nelson and H. W. Rines (1962)Biochem. Biophys. Res. Commun. 9 297–300.

    PubMed  Google Scholar 

  27. O. E. Nelson, P. S. Chourey, and M. T. Chang (1978)Plant Physiol. 62 383–386.

    Google Scholar 

  28. M. Shure, S. Wessler, and N. Fedoroff (1983)Cell 35 225–233.

    PubMed  Google Scholar 

  29. R. B. Klösgen, A. Gierl, Z. Scwartz-Sommer, and H. Saedler (1986)Mol. Gen. Genet. 203 237–244.

    Google Scholar 

  30. W. Rhode, D. Becker, and F. Salamini (1988)Nucleic Acids Res. 16 7185–7186.

    PubMed  Google Scholar 

  31. Z. Wang, Z. Wu, Y. Xing, F. Zheng, X. Guo, W. Zang, and M. Hong, (1990)Nucleic Acids Res. 18 5898.

    PubMed  Google Scholar 

  32. F. R. van der Leij, R. G. F. Visser, A. S. Ponstein, E. Jacobsen, and W. J. Feenstra (1991)Mol. Gen. Genet. 228 240–248.

    PubMed  Google Scholar 

  33. I. Dry, A. Smith, A. Edwards, M. Bhattarcharyya, P. Dunn, and C. Martin (1992)Plant J. 2 193–202.

    PubMed  Google Scholar 

  34. A. Kumar, C. E. Larsen, and J. Preiss (1986)J. Biol. Chem. 261 16256–16259.

    PubMed  Google Scholar 

  35. K. Furukawa, M. Tagaya, M. Inouye, J. Preiss, and T. Fukui (1989)J. Biol. Chem. 265 2086–2090.

    Google Scholar 

  36. A. Smith (1990)Planta 182 599–604.

    Google Scholar 

  37. M. N. Sivak, M. Wagner, and J. Preiss (1993)Plant Physiol. 103 1355–1359.

    PubMed  Google Scholar 

  38. T. Baba, K. Kimura, K. Mizuno, H. Etoh, Y. Ishida, O. Shida, and Y. Arai (1991)Biochem. Biophys. Res. Commun. 181 87–94.

    PubMed  Google Scholar 

  39. J. S. Hawker, J. L. Ozbun, H. Ozaki, E. Greenberg, and J. Preiss (1974)Arch. Biochem. Biophys. 160 530–551.

    PubMed  Google Scholar 

  40. Y. Takeda, H. P. Guan, and J. Preiss (1993)Carbohydr. Res. 240 253–263.

    Google Scholar 

  41. C. D. Boyer and J. Preiss (1978)Carbohydr. Res. 61 321–334.

    Google Scholar 

  42. B. K. Singh and J. Preiss (1985)Plant Physiol. 78 849–852.

    Google Scholar 

  43. H. P. Guan and J. Preiss (1993)Plant Physiol. 102 1269–1273.

    PubMed  Google Scholar 

  44. C. D. Boyer and J. Preiss (1978)Biochem. Biophys. Res. Commun. 80 169–175.

    PubMed  Google Scholar 

  45. G. H. Vos-Scheperkeuter, J. G. De Wit, A. S. Ponstein, W. J. Feenstra, and B. Witholt (1989)Plant Physiol. 90 75–84.

    Google Scholar 

  46. J. Edwards, J. H. Green, and T. ap Rees (1988)Phytochemistry 27 1615–1620.

    Google Scholar 

  47. A. M. Smith (1988)Planta 175 270–279.

    Google Scholar 

  48. J. Carter and E. E. Smith (1978)Carbohydr. Res. 61 395–406.

    PubMed  Google Scholar 

  49. M. K. Bhattacharyya, A. M. Smith, T. H. Noel-Ellis, C. Hedley, and C. Martin (1990)Cell 60 115–122.

    PubMed  Google Scholar 

  50. P. A. Baecker, E. Greenberg, and J. Preiss (1986)J. Biol. Chem. 261 8738–8743.

    PubMed  Google Scholar 

  51. J. A. K. W. Kiel, J. M. Boels, G. Beldman, J. P. M. J. Vossen, and G. Venema (1990)Gene 89 77–84.

    PubMed  Google Scholar 

  52. J. Koßmann, R. G. F. Visser, B. T. Müller-Röber, L. Willmitzer, and U. Sonnewald (1991)Mol. Gen. Genet. 230 39–44.

    PubMed  Google Scholar 

  53. S. N. I. M. Salehuzzman, E. Jacobsen, and R. G. F. Visser (1992)Plant Mol. Biol. 20 809–819.

    PubMed  Google Scholar 

  54. K. Mizuno, K. Kimura, Y. Arai, T. Kawasaki, H. Shimada, and T. Baba (1992)J. Biochem. 112 643–651.

    PubMed  Google Scholar 

  55. Y. Nakamura and H. Yamanouchi (1992)Plant Physiol. 99 1265–1266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivak, M.N., Preiss, J. Progress in the genetic manipulation of crops aimed at changing starch structure and increasing starch accumulation. J Environ Polym Degr 3, 145–152 (1995). https://doi.org/10.1007/BF02068465

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02068465

Key words

Navigation