Skip to main content
Log in

The accuracy of aminoacylation — ensuring the fidelity of the genetic code

  • Multi-author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The fidelity of protein biosynthesis rests not only on the proper interaction of the messenger RNA codon with the anticodon of the tRNA, but also on the correct attachment of amino acids to their corresponding (cognate) transfer RNA (tRNA) species. This process is catalyzed by the aminoacyl-tRNA synthetases which discriminate with remarkable selectivity amongst many structurally similar tRNAs. The basis for this highly specific recognition of tRNA by these enzymes (also referred to as ‘tRNA identity’) is currently being elucidated by genetic, biochemical and biophysical techniques. At least two factors are important in determining the accuracy of aminoacylation: a) ‘identity elements’ in tRNA denote nucleotides in certain positions crucial for protein interactions determining specificity, and b) the occurrence in vivo of competition between synthetases for a particular tRNA which may have ambiguous identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akins, A., and Lambowitz, A., A protein required for splicing group I introns inNeurospora mitochondria is mitochondrial tyrosyl-tRNA synthetase or a derivative thereof. Cell50 (1987) 331–345.

    Article  CAS  PubMed  Google Scholar 

  2. Baldwin, A. N., and Berg, P., Transfer ribonucleic acid-induced hydrolysis of valyladenylate bound to isoleucyl ribonucleic acid synthetase. J. biol. Chem.241 (1966) 839–845.

    Article  CAS  PubMed  Google Scholar 

  3. Barat, C., Lullien, V., Schatz, O., Keith, G., Nugeyre, M. T., Gruninger-Leitch, F., Barre-Sinoussi, F., LeGrice, S. F., and Darlix, J. L., HIV-1 reverse transcriptase specifically interacts with the anti-codon domain of its cognate primer tRNA. EMBO J.8 (1989) 3279–3285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bedouelle, H., and Winter, G., A model of synthetase/transfer RNA interaction as deduced by protein engineering. Nature320 (1986) 371–373.

    Article  CAS  PubMed  Google Scholar 

  5. Brick, P., Bhat, T. N., and Blow, D. M., Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution. Interaction of the enzyme with tyrosyl adenylate intermediate. J. molec. Biol.208 (1989) 83–98.

    Article  CAS  PubMed  Google Scholar 

  6. Crothers, D. M., Seno, T., and Söll, D., Is there a discriminator site in transfer RNA? Proc. natl Acad. Sci. USA69 (1972) 3063–3067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. deDuve, C., Transfer RNAs: the second genetic code. Nature333 (1988) 117–118.

    Article  CAS  Google Scholar 

  8. Eggertsson, G., and Söll, D., Transfer RNA-mediated suppression of termination codons inEscherichia coli. Microbiol. Rev.52 (1988) 354–374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D., Primary sequence of ProRS and partition of all tRNA-synthetases into two classes, as revealed by three new sequence motifs. Nature347 (1990) 203–206.

    Article  CAS  PubMed  Google Scholar 

  10. Ferguson, B. Q., and Yang, D. C., Methionyl-tRNA synthetase induced 3′-terminal and delocalized conformational transition in tRNAfMet: steady-state fluorescence of tRNA with a single fluorophore. Biochemistry25 (1986) 529–539.

    Article  CAS  PubMed  Google Scholar 

  11. Freist, W., Mechanisms of aminoacyl-tRNA synthetases: a critical consideration of recent results. Biochemistry28 (1989) 6787–6795.

    Article  CAS  PubMed  Google Scholar 

  12. Ghysen, A., and Celis, J. E., Mischarging single and double mutants ofEscherichia coli su3 tyrosine transfer RNA. J. molec. Biol.83 (1974) 333–351.

    Article  CAS  PubMed  Google Scholar 

  13. Hartman, P. E., and Roth, J. R., Mechanisms of suppression. Adv. Genet.17 (1973) 1–105.

    Article  CAS  PubMed  Google Scholar 

  14. Hecht, S. M., 2′-OH vs 3′-OH specificity in tRNA aminoacylation, in: Transfer RNA: Structure, Properties and Recognition, pp. 345–360. Eds P. R. Schimmel, D. Söll, and J. N. Abelson. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1979.

    Google Scholar 

  15. Hooper, J. L., Russell, R. L., and Smith, J. D., Mischarging in mutant tyrosine transfer RNAs. FEBS Lett.22 (1972) 149–155.

    Article  CAS  PubMed  Google Scholar 

  16. Hou, Y.-M., and Schimmel, P., A simple structural feature is a major determinant of the identity of a transfer RNA. Nature333 (1988) 140–145.

    Article  CAS  PubMed  Google Scholar 

  17. Hou, Y.-M., and Schimmel, P., Modeling with in vitro parameters for the elaboration of transfer RNA identity in vitro. Biochemistry28 (1989) 4942–4947.

    Article  CAS  PubMed  Google Scholar 

  18. Inokuchi, H., Celis, J. E., and Smith, J. D., Mutant tyrosine transfer ribonucleic acids ofEscherichia coli: construction by recombination of a double mutant A1G82 chargeable with glutamine. J. molec. Biol.85 (1974) 187–192.

    Article  CAS  PubMed  Google Scholar 

  19. Inokuchi, H., Hoben, P., Yamao, F., Ozeki, H., and Söll, D., Transfer RNA mischarging mediated by a mutantEscherichia coli glutaminyl-tRNA synthetase. Proc. natl Acad. Sci. USA81 (1984) 5076–5080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jakubowski, H., and Goldman, E., Quantities of individual aminoacyl-tRNA families and their turnover inEscherichia coli. J. Bact.158 (1984) 769–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jasin, M., Regan, L., and Schimmel, P., Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Nature, Lond.306 (1983) 441–447.

    Article  CAS  PubMed  Google Scholar 

  22. Kim, S. H., Crystal structure of yeast tRNAPhe and general structural features of other tRNAs, in: Transfer RNA: Structure, Properties and Recognition, pp. 83–100. Eds P. R. Schimmel, D. Söll and J. N. Abelson. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1979.

    Google Scholar 

  23. Komine, Y., Adachi, T., Inokuchi, H., and Ozeki, H., Genomic organization and physical mapping of the transfer RNA genes inEscherichia coli K12. J. molec. Biol.212 (1990) 579–598.

    Article  CAS  PubMed  Google Scholar 

  24. Leatherbarrow, R. J., and Fersht, A. R., Protein Engineering. Protein Engineering1 (1986) 7–16.

    Article  CAS  PubMed  Google Scholar 

  25. Loftfield, R. B., and Vanderjagt, M. A., The frequency of errors in protein biosynthesis. Biochem. J.128 (1972) 1353–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McClain, W. H., and Foss, K., Changing the identity of a tRNA by introducing a G-U wobble pair near the 3′ acceptor end. Science240 (1988) 793–796.

    Article  CAS  PubMed  Google Scholar 

  27. McClain, W. H., and Nicholas, H. B. Jr, Differences between transfer RNA molecules. J. molec. Biol.194 (1987) 635–642.

    Article  CAS  PubMed  Google Scholar 

  28. Monteilhet, C., and Blow, D. M., Binding of tyrosine, adenosine triphosphate and analogues to crystalline tyrosyl transfer RNA synthetase. J. molec. Biol.122 (1978) 407–417.

    Article  CAS  PubMed  Google Scholar 

  29. Muramatsu, T., Nishikawa, K., Nemoto, F., Kuchino, Y., Nishimura, S., Miyazawa, T., and Yokoyama, S., Codon and amino-acid specificities of a transfer RNA are both converted by a single post-transcriptional modification. Nature336 (1988) 179–181.

    Article  CAS  PubMed  Google Scholar 

  30. Murgola, E. J., tRNA, suppression, and the code. A. Rev. Genet.19 (1985) 57–80.

    Article  CAS  Google Scholar 

  31. Normanly, J., and Abelson, J., Transfer RNA identity. A. Rev. Biochem.58 (1989) 1029–1049.

    Article  CAS  Google Scholar 

  32. Normanly, J., Ogden, R. C., Horvath, S. J., and Abelson, J., Changing the identity of a transfer RNA. Nature321 (1986) 213–219.

    Article  CAS  PubMed  Google Scholar 

  33. O'Connor, M., Gesteland, R. F., and Atkins, J. F., tRNA hopping: enhancement by an expanded anticodon. EMBO J.8 (1989) 4315–4323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ozeki, H., Inokuchi, H., Yamao, F., Kodaira, M., Sakano, H., Ikemura, T., and Shimura, Y., Genetics of nonsense suppressor tRNAs inEscherichia coli, in: Transfer RNA: Biological Aspects, pp. 341–362. Eds D. Söll, J. N. Abelson and P. R. Schimmel. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1980.

    Google Scholar 

  35. Perona, J. J., Swanson, R. N., Rould, M. A., Steitz, T. A., and Söll, D., Structural basis for misaminoacylation by mutantE. coli glutaminyl-tRNA synthetase enzymes. Science246 (1989) 1152–1154.

    Article  CAS  PubMed  Google Scholar 

  36. Perona, J. J., Swanson, R., Steitz, T. A., and Söll, D., Overproduction and purification ofEscherichia coli tRNA Gln2 and its use in crystallization of the glutaminyl-tRNA synthetase: tRNAGln complex. J. molec. Biol.202 (1988) 121–126.

    Article  CAS  PubMed  Google Scholar 

  37. Remme, J., Margus, T., Villems, R., and Nierhaus, K. H., The third ribosomal transfer RNA-binding site, the E site, is occupied in native polysomes. Eur. J. Biochem.183 (1989) 281–284.

    Article  CAS  PubMed  Google Scholar 

  38. Rogers, M. J., and Söll, D., Discrimination between glutaminyl-tRNA synthetase and seryl-tRNA synthetase involves nucleotides in the acceptor helix of tRNA. Proc. natl Acad. Sci. USA85 (1988) 6627–6631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rouget, P., and Chapeville, F., Leucyl-tRNA synthetase. Two forms of the enzyme: relation between structural and catalytic properties. Eur. J. Biochem.23 (1971) 459–467.

    Article  CAS  PubMed  Google Scholar 

  40. Rould, M. A., Perona, J., Söll, D., and Steitz, T., Structure ofE. coli glutaminyl-tRNA synthetase complexed with tRNAGln and ATP at 2.8 Å resolution. Science246 (1989) 1135–1142.

    Article  CAS  PubMed  Google Scholar 

  41. Rubin, J., and Blow, D. M., Amino acid activation in crystalline tyrosyl-tRNA synthetase fromBacillus stearothermophilus. J. molec. Biol.145 (1981) 489–500.

    Article  CAS  PubMed  Google Scholar 

  42. Sampson, J. R., DiRenzo, A. B., Behlen, L. S., and Uhlenbeck, O. C., Nucleotides in yeast tRNAPhe required for the specific recognition by its cognate synthetase. Science243 (1989) 1363–1366.

    Article  CAS  PubMed  Google Scholar 

  43. Sampson, J. R., and Uhlenbeck, O. C., Biochemical and physical characterization of an unmodified yeast phenylalamine transfer RNA transcribed in vitro. Proc. natl Acad. Sci.85 (1988) 1033–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schimmel, P., Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of tRNAs. A. Rev. Biochem.56 (1987) 125–158.

    Article  CAS  Google Scholar 

  45. Schön, A., Kannangara, C. G., Gough, S., and Söll, D., Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature331 (1988) 187–190.

    Article  PubMed  Google Scholar 

  46. Schön, A., Krupp, G., Gough, S., Berry-Lowe, S., Kannangara, C. G., and Söll, D., The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature, Lond.322 (1986) 281–284.

    Article  PubMed  Google Scholar 

  47. Schulman, L. H., and Pelka, H., In vitro conversion of a methionine to a glutamine acceptor tRNA. Biochemistry24 (1985) 7309–7314.

    Article  CAS  PubMed  Google Scholar 

  48. Schulman, L. H., and Pelka, H., Anticodon switching changes the identity of methionine and valine transfer RNAs. Science242 (1988) 765–768.

    Article  CAS  PubMed  Google Scholar 

  49. Seno, T., Agris, P. F., and Söll, D., Involvement of the anticodon region ofEscherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl tRNA synthetase: Alteration of the 2-thiouridine derivitives in the anticodon of the tRNAs by BrCN or sulfur deprivation. Biochim. biophys. Acta349 (1974) 328–338.

    Article  CAS  PubMed  Google Scholar 

  50. Shimura, Y., Aono, H., Ozeki, H., Sarabhai, A., Lamfrom, H., and Abelson, J., Mutant tyrosine tRNA of altered amino acid specificity. FEBS Lett.22 (1972) 144–148.

    Article  CAS  PubMed  Google Scholar 

  51. Shoffner, J. M., Lott, M. T., Lezza, A. M. S., Seibel, P., Ballinger, S. W., and Wallace, D. C., Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNALys mutation. Cell61 (1990) 931–937.

    Article  CAS  PubMed  Google Scholar 

  52. Smith, J. D., and Celis, J. E., Mutant tyrosine transfer RNA that can be charged with glutamine. Nature New Biol.243 (1973) 66–71.

    CAS  PubMed  Google Scholar 

  53. Söll, D., and Schimmel, P. R., Aminoacyl-tRNA synthetases, in: The Enzymes, vol. X, pp. 489–538. Ed. P. Boyer. Academic Press, San Francisco 1974.

    Google Scholar 

  54. Sprinzl, M., Hartmann, T., Meissner, F., Moll, J., and Vorderwülbecke, T., Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res.15 (1987) r53–r188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Swanson, R., Hoben, P., Sumner-Smith, M., Uemura, H., Watson, L., and Söll, D., Accuracy of in vivo aminoacylation requires the proper balance of tRNA and aminoacyl-tRNA synthetase. Science242 (1988) 1548–1551.

    Article  CAS  PubMed  Google Scholar 

  56. Thorbjarnardottir, S., Dingermann, T., Rafnar, T., Andresson, O.S., Söll, D., and Eggertsson, G., Leucine tRNA family ofEscherichia coli: nucleotide sequence of the supP(Am) suppressor gene. J. Bact.161 (1985) 219–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Uemura, H., Conley, J., Yamao, F., Rogers, J., and Söll, D.,Escherichia coli glutaminyl-tRNA synthetase: a single aminoa cid replacement relaxes tRNA specificity. Protein Sequences Data Analysis1 (1988) 479–485.

    CAS  PubMed  Google Scholar 

  58. Uemura, H., Rogers, M.J., Swanson, R., Watson, L., and Söll, D., Site-directed mutagenesis to fine-tune enzyme specifity. Protein Engineering2 (1988) 293–296.

    Article  CAS  PubMed  Google Scholar 

  59. Waldrop, M. M., The structure of the ‘second genetic code’. Science246 (1989) 1122.

    Article  CAS  PubMed  Google Scholar 

  60. Williamson, R. M., and Oxender, D. L., Sequence and structural similarities between the leucine-specific binding protein and leucyl-tRNA synthetase ofEscherichia coli. Proc. natl Acad. Sci. USA87 (1990) 4561–4565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yaniv, M., Folk, W. R., Berg, P., and Soll, L., A single modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG. J. molec. Biol.86 (1974) 245–260.

    Article  CAS  PubMed  Google Scholar 

  62. Yarus, M., Translational efficiency of transfer RNAs: uses of an extended anticodon. Science218 (1982) 646–652.

    Article  CAS  PubMed  Google Scholar 

  63. Zelwer, C., Risler, J. L., and Brunie, S., Crystal structure ofEscherichia coli methionyl-tRNA synthetase at 2.5 Å resolution. J. molec. Biol.155 (1982) 63–81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Söll, D. The accuracy of aminoacylation — ensuring the fidelity of the genetic code. Experientia 46, 1089–1096 (1990). https://doi.org/10.1007/BF01936918

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01936918

Key words

Navigation