Skip to main content
Log in

Observed phase transformations of oxalate-derived lead monoxide powder

  • Published:
Journal of thermal analysis Aims and scope Submit manuscript

Abstract

The purpose of this study is to elucidate the nature of the phase transformations of lead monoxide powder. Lead monoxide is prepared by calcination of a lead oxalate precursor salt, and its phase transformations are studied using X-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TG). Analysis reveals that the phase transformations observed for oxalate-derived lead monoxide powder are highly dependent on the firing atmosphere. In nitrogen, as the temperature is increased 1 deg/min from room temperature, lead monoxide undergoes a reconstructive litharge-to-massicot phase transformation in a temperature range of 525–575°C. In air, litharge, metastable at room temperature, slowly oxidizes to the Pb3O4 phase at a temperature of 350°C and rapidly reduces to litharge at 560°C. At temperatures greater than 560°C, litharge converts to massicot. With heating rates of 10 deg/min or higher, formation of Pb3O4 is not observed.

Zusammenfassung

Zweck dieser Untersuchung ist, das Wesen der Phasenumwandlungen von Bleimonoxidpulver zu ergründen. Bleimonoxid wird durch Calzinierung von Bleioxalat hergestellt und seine Phasenumwandlungen wurden mittels Röntgendiffraktion, DSC und TG untersucht. Die Analyse zeigt, daß die für das aus Oxalat erhaltene Bleimonoxidpulver beobachteten Phasenumwandlungen stark von der Heizatmosphäre abhängen. Wird die Temperatur ab Raumtemperatur mit einer Aufheizgeschwindigkeit von 1/min erhöht, geht Bleimonoxid in Stickstoff im Temperaturbereich 525°–575°C eine rekonstruktive Bleiglätte-Massicot-Phasenumwandlung ein. In Luft wird die bei Raumtemperatur metastabile Bleiglätte bei 350°C langsam zu Pb3O4 oxidiert und dann bei 560°C schnell zu Bleiglätte reduziert. Bei Temperaturen über 560°C wird Bleiglätte in Massicot umgewandelt. Bei Aufheizgeschwindigkeiten von über 10/min kann keine Bildung von Pb3O4 beobachtet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. E. Brown, Lead Oxide Properties and Applications, International Lead Zinc Research Organization, Inc., New York 1985.

    Google Scholar 

  2. T. Ishii, R. Furuichi, T. Nagasawa and K. Yokoyama, J. Thermal Anal., 19 (1980) 467.

    Google Scholar 

  3. S. Y. Chen, S. Y. Cheng and C. M. Wang, J. Amer. Ceram. Soc., 73 (1990) 232.

    Article  Google Scholar 

  4. M. Petersen, J. Amer. Chem. Soc., 63 (1941) 1302.

    Article  Google Scholar 

  5. W. B. White, F. Dachille and R. Roy, J. Amer. Ceram. Soc., 44 (1961) 170.

    Google Scholar 

  6. I. Barin, Thermochemical Data of Pure Substances, Part II, VCH Publishers, New York 1989.

    Google Scholar 

  7. R. Soderquist and B. Dickens, J. Phys. Chem. Solids, 28 (1967) 823.

    Article  Google Scholar 

  8. R. Clarke and F. Greene, Thin Solid Films, 66 (1980) 339.

    Article  Google Scholar 

  9. C. A. Sorrell, J. Amer. Ceram. Soc., 55 (1972) 47.

    Google Scholar 

  10. I. J. Lin and S. Niedzwiedz, J. Amer. Ceram. Soc., 56 (1973) 62.

    Google Scholar 

  11. M. Senna and H. Kuno, J. Amer. Ceram. Soc., 54 (1971) 259.

    Google Scholar 

  12. D. Lewis, D. O. Northwood and R. C. Reeve, J. Appl. Crystallogr., 2 (1969) 156.

    Article  Google Scholar 

  13. G. L. Clark and R. Rowan, J. Amer. Chem. Soc., 63 (1941) 1302.

    Article  Google Scholar 

  14. Y. Sugahara, Y. Noshi, H. Naito, M. Saito, A. Takahashi and H. Tuchida, U. S. Patent 4, 117, 104, Sept. 26, 1978.

  15. J. S. Nordyke, Lead in the World of Ceramics, American Ceramic Society, Columbus, OH 1984, p. 5.

    Google Scholar 

  16. L. Gordon, M. L. Salutsky and H. H. Williard, Precipitation from Homogeneous Solution, Wiley, New York 1959.

    Google Scholar 

  17. S. E. Morsi, U. A. R. J. Chem., 13 (1970) 1134.

    Google Scholar 

  18. M. Munson and R. E. Riman, Ceramic Transactions, Eds. H. C. Ling and M. F. Yan, Vol. 8, American Ceramic Society, Westerville, OH 1990, p. 213.

    Google Scholar 

  19. C. A. Sorrell, J. Amer. Ceram. Soc., 54 (1971) 501.

    Google Scholar 

  20. C. A. Sorrell, J. Amer. Ceram. Soc., 56 (1973) 613.

    Google Scholar 

  21. L. B. Pankratz, Thermodynamic Properties of Elements and Oxides, Bulletin 672, U.S.Bureau of Mines, U.S.Government Printing Office, Washington D. C. 1982.

    Google Scholar 

  22. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald and A. N. Syverud, J. Phys. Chem. Ref. Data, Suppl., Vol. 14, 1985.

  23. C. E. Wicks and F. E. Block, Thermodynamic Properties of 65 Elements: Their Oxides, Halides, Carbides and Nitrides, Bulletin 605, Bureau of Mines, U.S. Government Printing Office, Washington, D. C. 1963.

    Google Scholar 

  24. Gmelins Handbuch der Anorganischen Chemie, Lead, Ed. G. Hartke, Part C, Vol.1, System-Number 47, Verlag Chem., Weinheim/Bergstr. 1969.

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors would like to acknowledge the Center for Ceramic Research and the New Jersey State Commission on Science and Technology for the support of this research. The authors would also like to thank Ms. K. Griffin for her efforts in preparing this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Munson, M.J., Riman, R.E. Observed phase transformations of oxalate-derived lead monoxide powder. Journal of Thermal Analysis 37, 2555–2566 (1991). https://doi.org/10.1007/BF01912800

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01912800

Keywords

Navigation