Skip to main content
Log in

Cell pH and luminal acidification inNecturus proximal tubule

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Cellular potential and pH measurements (pH i ) were carried out in the perfused kidney ofNecturus on proximal tubules with standard and recessed-tip glass microelectrodes under control conditions and after stimulation of tubular bicarbonate reabsorption. Luminal pH and net bicarbonate reabsorption were measured in parallel experiments with recessed-tip glass or antimony electrodes, both during stationary microperfusions as well as under conditions of isosmotic fluid transport. A mean cell pH of 7.15 was obtained in control conditions. When the luminal bicarbonate concentration was raised to 25 and 50mm, pH i rose to 7.44 and 7.56, respectively. These changes in pH i were fully reversible. Under all conditions intracellular H+ was below electrochemical equilibrium. Thus the maintenance of intracellular pH requires “active” H+ extrusion across one or both of the cell membranes. The observed rise in pH i and the peritubular depolarization after stimulation of bicarbonate reabsorption are consistent with enhanced luminal hydrogen ion secretion and augmentation of peritubular bicarbonate exit via an anion-conductive transport pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berry, C.A. 1981. Electrical effects of acidification in the rabbit proximal convoluted tubule.Am. J. Physiol. 240:F459-F470

    PubMed  Google Scholar 

  • Bichara, M., Paillard, M., Leviel, F., Gardin, J.P. 1980. Hydrogen transport in rabbit kidney proximal tubules—Na∶H exchange.Am. J. Physiol. 238:F445-F451

    PubMed  Google Scholar 

  • Boron, W.F., Boulpaep, E.L. 1980a. Intracellular pH in isolated, perfused proximal tubules of amphibian kidney.Fed. Proc. 39:713

    Google Scholar 

  • Boron, W.F., Boulpaep, E.L. 1980b. Intracellular pH regulation in the salamander renal proximal tubule.Kidney Int. 18:126A

    Google Scholar 

  • Boron, W.F., Boulpaep, E.L. 1981. Hydrogen and bicarbonate transport by salamander proximal tubule cells.In: Intracellular pH. R. Nucchitelli and D. Deamer, editors. Liss, New York (in press)

    Google Scholar 

  • Boron, W.F., DeWeer, P. 1976. Intracellular pH transients in squid giant axon caused by CO2, NH3 and metabolis inhbitors.J. Gen. Physiol. 67:91–112

    Google Scholar 

  • Bott, P.A. 1962. A micropuncture study of renal excretion of water, K, Na and Cl inNecturus.Am. J. Physiol. 203:662–666

    Google Scholar 

  • Boulpaep, E. 1976a. Electrical phenomena in the nephron.Kidney Int. 9:88–102

    PubMed  Google Scholar 

  • Boulpaep, E. 1976b. Recent advances in electrophysiology of the nephron.Annu. Rev. Physiol. 38:20–36

    Article  Google Scholar 

  • Burckhardt, B.-Ch., Frömter, E. 1980. Bicarbonate transport across the peritubular membrane of rat kidney proximal tubule.In: Hydrogen Transport in Epithelia. J. Schultz, G. Sachs, J.G. Forte, and K.J. Ullrich, editors. pp. 277–286. Elsevier-North Holland, Amsterdam-New York-Oxford

    Google Scholar 

  • Cassola, A.C., Giebisch, G., Malnic, G. 1977. Mechanisms and components of renal tubular acidification.J. Physiol. (London) 267:601–624

    Google Scholar 

  • Chan, Y.L., Giebisch, G. 1981. Relationship between sodium and bicarbonate transport in the rat proximal convoluted tubule.Am. J. Physiol. 240:F222-F230

    PubMed  Google Scholar 

  • Dole, W. 1941. The Glass Electrode: Methods, Applications, and Theory, p. 131. J. Wiley & Sons, New York

    Google Scholar 

  • Edelman, A., Bouthier, M., Anagnostopoulos, T. 1981. Chloride distribution in the proximal convoluted tubule ofNecturus kidney.J. Membrane Biol. 62:7–18

    Google Scholar 

  • Giebisch, G. 1956. Measurement of pH, chloride and inulin concentrations in proximal tubule fluid ofNecturus.Am. J. Physiol. 185:171–175

    PubMed  Google Scholar 

  • Giebisch, G. 1961. Measurement of electrical potential difference on single nephrons of the perfusedNecturus kidney.J. Gen. Physiol. 44:659

    PubMed  Google Scholar 

  • Giebisch, G., Malnic, G., Mello, G.B. de, Mello-Aires, M. de. 1977. Kinetics of luminal acidification in cortical tubules of the rat kidney.J. Physiol. (London) 267:571–559

    Google Scholar 

  • Giebisch, G., Sullivan, L.P., Whittembury, G. 1973. Relationship between tubular net sodium transport and peritubular potassium uptake in the perfusedNecturus kidney.J. Physiol. (London) 230:51–73

    Google Scholar 

  • Guggino, W.B., London, R., Boulpaep, E.L., Giebisch, G. 1981. Regulation of intracellular chloride in theNecturus proximal tubule cell.Fed. Proc. 40:706

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  • Hoshiko, T., Lindley, B.D. 1967, Phenomenological description of active transport of salt and water.J. Gen. Physiol. 50:729–758

    PubMed  Google Scholar 

  • Isard, J.O. 1967. The dependence of glass-electrode properties on composition.In: Glass Electrodes Hydrogen and Other Cations. G. Eisenman, editor. pp. 51–100. Marcel Dekker, New York

    Google Scholar 

  • Kedem, O., Katchalsky, A. 1963. Permeability of composite membranes. I. Electric current, volume flow and flow of solute through membranes.Trans. Faraday Soc. 59:1918–1930

    Google Scholar 

  • Khuri, R.N., Agulian, S.K., Bogharian, K., Nassar, R., Wise, W. 1974. Intracellular bicarbonate in single cells ofNecturus proximal tubule.Pfluegers Arch. 349:295–299

    Google Scholar 

  • Kimura, G., Spring, K.R. 1978. Transcellular and paracellular tracer chloride fluxes inNecturus proximal tubule.Am. J. Physiol. 235:F617–625

    Google Scholar 

  • Kinsella, J.L., Aronson, P.S. 1980. Properties of the Na+−H+ exchanger in renal microvillus membrane vesicles.Am. J. Physiol. 238:F461–469

    Google Scholar 

  • Malnic, G., Giebisoh, G. 1979. Cellular aspects of renal tubular acidification.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson, and H.H. Ussing, editors. Vol. 4A, pp. 229–355. Springer-Verlag, Berlin-Heidelberg-New York

    Google Scholar 

  • Malnic, G., Mello-Aires, M. de 1972. Kinetic study of the bicarbonate reabsorption in proximal tubule of the rat.Am. J. Physiol. 220:1759–1767

    Google Scholar 

  • Malnic, G., Steinmetz, P.R. 1976. Transport process in urinary acidification.Kidney Int. 9:172–188

    PubMed  Google Scholar 

  • Maren, T.H. 1967. Carbonic anhydrase: Chemistry, physiology and inhibition.Physiol. Rev. 47:595–781

    PubMed  Google Scholar 

  • Matsumura, Y., Guggino, W.B., Giebisch, G. 1981. Electrical effects of potassium and bicarbonate on proximal tubule cell ofNecturus: Intracellular K affects K conductance.Kidney Int. 21:281

    Google Scholar 

  • Montgomery, H., Pierce, J.A. 1937. The site of acidification of the urine within the renal tubule of amphibia.Am. J. Physiol. 118:144–152

    Google Scholar 

  • Roos, A., Boron, W.F. 1981. Intracellular pH.Physiol. Rev. 61:296–434

    PubMed  Google Scholar 

  • Sacktor, B. 1977. Transport in membrane vesicles isolated from the mammalian kidney and intestine.In: Current Topics in Bioenergetics. R. Sanadi, editor. Vol. VI, pp. 39–81. Academic Press, New York

    Google Scholar 

  • Shindo, T., Spring, K.R. 1981. Chloride movement across the basolateral membrane of proximal tubule cells.J. Membrane Biol. 58:35–42

    Google Scholar 

  • Struyvenberg, A., Morrison, R.B., Relman, A.S. 1968. Acid-base behavior of separated canine renal tubules.Am. J. Physiol. 214:1155–1162

    PubMed  Google Scholar 

  • Thomas, R.C. 1974. Intracellular pH of snail neurones measured with a new pH-sensitive glass microelectrode.J. Physiol. (London) 238:159–180

    Google Scholar 

  • Thomas, R.C. 1978. Ion-sensitive Intracellular Microelectrodes. Academic Press, London-New York-San Francisco

    Google Scholar 

  • Ullrich, K.J. 1973. Permeability characteristics of the mammalian nephron.In: Handbook of Physiology, Section 8: Renal Physiology. J. Orloff, R.W. Berliner, and S.R. Geiger, editors. pp. 377–414. American Physiological Society, Washington, D.C.

    Google Scholar 

  • Ullrich, K.J., Rumrich, G., Baumann, K. 1975. Renal proximal tubular buffer (glycodiazine) transport. Inhomogeneity of local transport dependence or sodium effect of inhibitors and chronic adaptation.Pfluegers Arch. 357:140–163

    Google Scholar 

  • Vieira, F.L., Malnic, G. 1968. Hydrogen ion secretion by rat renal cortical tubules as studied by the antimony microelectrode.Am. J. Physiol. 214:710–718

    PubMed  Google Scholar 

  • Warnock, D.G., Rector, F.C., Jr. 1979. Proton secretion by the kidney.Annu. Rev. Physiol. 41:197–210

    PubMed  Google Scholar 

  • Warnock, D., Rector, F.C., Jr. 1981. Renal acidification mechanism.In: The Kidney. B.M. Brenner and F.C. Rector, Jr., editors. pp. 440–494. W. B. Saunders, Philadelphia-London-Toronto

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Regan, M.G., Malnic, G. & Giebisch, G. Cell pH and luminal acidification inNecturus proximal tubule. J. Membrain Biol. 69, 99–106 (1982). https://doi.org/10.1007/BF01872269

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872269

Key words

Navigation