Skip to main content
Log in

Functional reconstitution of lens gap junction proteins into proteoliposomees

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Membranes rich in junction complexes were prepared from bovine lens, and the fragments of the membranes were reconstituted into proteoliposomes with a large excess of phosphatidylcholine and dicetylphosphate. The osmotic swelling behavior of these liposomes showed that the lens junction membranes contributed protein components that produced channels with a nominal diameter of 1.4 nm. Most preparations of lens junctions produced rates of osmotic swelling much slower than those found in proteoliposomes containing equivalent amounts ofEscherichia coli porin, and we discuss several possible explanations for this observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernardini, G., Peracchia, C. 1981. Gap junction crystallization in lens fibers after an increases in cell calcium.Invest. Ophthalmol. 21:291–299

    Google Scholar 

  2. Brockhuyse, R.M., Kuhlman, E.D. 1978. Lens membrane: IV. Preparative isolation and characterization of the membranes and various membrane proteins from calf lens.Exp. Eye Res. 26:305–320

    Article  PubMed  Google Scholar 

  3. Brockhuyse, R.M., Kuhlman, E.D., Bijvelt, J., Verkleij, A.J., Ververgaert, P.H.T. 1978. Lens membranes: III. Freeze fracture morphology and composition of bovine lens fibre membranes in relation to ageing.Exp. Eye Res. 26:147–156

    PubMed  Google Scholar 

  4. Caspar, D.L.D., Goodenough, D.A., Makowski, L., Phillips, W.C. 1977. Gap junction structures: I. Correlated electron microscopy and X-ray diffraction.J. Cell Biol. 74:605–628

    PubMed  Google Scholar 

  5. Cohen, A.I. 1965. The electron microscopy of the normal human lens.Invest. Ophthalmol. 4:443–446

    Google Scholar 

  6. Colombini, M. 1979. A candidate for the permeability pathway of the outer mitochondrial membrane.Nature (London) 279:643–645

    Google Scholar 

  7. Costello, M.J., McIntosh, T.-J., Robertson, J.D. 1984. Square array fiber cell membrane in mammalian lens.In: Proceedings 42nd Meeting of Electron Microscopy Society of America. D.W. Dailey, editor, pp. 126–129. San Francisco Press, Sand Francisco

    Google Scholar 

  8. FitzGerald, P.G., Bok, D., Horwitz, J. 1983. Immunocytochemical localization of the main intrinsic polypeptide (MIP) in ultrathin frozen sections of rat lens.J. Cell Biol. 97:1491–1499

    PubMed  Google Scholar 

  9. French, D., Levine, M., Pazur, J.H. 1949. Studies on the Schardinger dextrins: II. Preparation and properties of amyloheptaose.J. Am. Chem. Soc. 71:356–358

    Google Scholar 

  10. Goodenough, D.A. 1974. Bulk isolation of mouse hepatocyte gap junctions.J. Cell Biol. 61:557–563

    PubMed  Google Scholar 

  11. Goodenough, D.A. 1979. Lens gap junctions: A structural hypothesis for nonregulated low-resistance intercellular pathways.Invest. Ophthalmol. 18:1104–1122

    PubMed  Google Scholar 

  12. Hertzberg, E.L., Anderson, D.J., Friedlander, M., Gilula, N.B. 1982. Comparative analysis of the major polypeptides from liver gap junctions and lens fiber junctions.J. Cell. Biol. 92:53–59

    Google Scholar 

  13. Kuszak, J.R., Rae, J.L., Pauli, B.U., Weinstein, R.S. 1982. Rotary replication of lens gap junctions.J. Ultrastruct. Res. 81:249–256

    PubMed  Google Scholar 

  14. Loewenstein, W.R. 1981. Junctional intercellular communication: The cell-to-cell membrane channel.Physiol. Rev. 61:829–913

    PubMed  Google Scholar 

  15. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  16. Lugtenberg, B., Meijers, J., Peters, R., Hoek, P. van der, Alphen, L. van 1975. Electrophotretic resolution of the ‘major outer membrane protein’ ofEscherichia coli K12 into four bands.FEBS Lett. 58:254–258

    PubMed  Google Scholar 

  17. Makowski, L., Caspar, D.L.D., Phillips, W.C., Goodenough, D.A. 1977. Gap junction structures: II. Analysis of the X-ray diffraction data.J. Cell Biol. 74:629–645

    PubMed  Google Scholar 

  18. Nakae, T. 1976. Outer membrane ofSalmonella. Isolation of protein complex that produces transmembranes channels.J. Biol. Chem. 251:2176–2178

    PubMed  Google Scholar 

  19. Nikaido, H., Rosengerg, E.Y. 1983. Porin channels inEscherichia coli: Studies with liposomes reconstituted from purified proteins.J. Bacteriol. 153:241–252

    PubMed  Google Scholar 

  20. Peracchia, C. 1977. Gap junctions: Structural changes after uncoupling procedures.J. Cell Biol. 72:628–641

    PubMed  Google Scholar 

  21. Peracchia, C. 1978. Structural correlates of gap junction permeation.Int. Rev. Cytol. 66:81–145

    Google Scholar 

  22. Peracchia. C., Girsh, S.J. 1984. Calmodulin-mediated gating of lens gap junction channels in vesicles.In: Proceedings 42nd Meeting of Electron Microscopy Society of America. G.W. Dailey, editor. pp. 134–137. San Francisco Press, San Francisco

    Google Scholar 

  23. Peracchia, C., Peracchia, L.L. 1980. Gap junction dynamics: Reversible effects of divalent cations.J. Cell Biol. 87:708–718

    Article  PubMed  Google Scholar 

  24. Renkin, E.M. 1954. Filtration, diffusion, and molecular sieving through porous cellulose membranes.J. Gen. Physiol. 38:225–243

    PubMed  Google Scholar 

  25. Rose, B., Loewenstein, W.R. 1975. Permeability of cell junction depends on local cytoplasmic calcium activity.Nature (London) 254:250–252

    Google Scholar 

  26. Schindler, H., Rosenbusch, J.P. 1978. Matrix protein fromE. coli outer membrane forms voltage-controlled channels in lipid bilayers.Proc. Natl. Acad. Sci. USA 75:3751–3755

    PubMed  Google Scholar 

  27. Schwarzmann, G., Wiegandt, H., Rose, B., Zimmerman, A., Ben-haim, D., Loewenstein, W.R. 1981. Diameter of the cell-to-cell junctional membrane channels as probed with neutral molecules.Science 213:551–553

    PubMed  Google Scholar 

  28. Simon, S.A., Zampighi, G., McIntosh, T.J., Costello, J., Ting-Beall, H.P., Robertson, J.D. 1982. The structure of junctions between lens fiber cells.Biosci. Rep. 2:333–341

    PubMed  Google Scholar 

  29. Unwin, P.N.T., Ennis, P.D. 1983. Calcium-mediated changes in gap junction structure: Evidence from the low angle X-ray pattern.J. Cell Biol. 97:1459–1465

    PubMed  Google Scholar 

  30. Unwin, P.N.T., Zampighi, G. 1980. Structure of the junction between communicating cells.Nature (London) 283:545–549

    Google Scholar 

  31. Yoshimura, F., Zalman, L.S., Nikaido, H. 1983. Purification and properties ofPseudomonas aeruginosa porin.J. Biol. Chem. 258:2308–2314

    PubMed  Google Scholar 

  32. Zalman, L.S., Nikaido, H., Kagawa, Y. 1980. Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels.J. Biol. Chem. 255:1771–1774

    PubMed  Google Scholar 

  33. Zampighi, G., Simon, S.A., Robertson, J.D., McIntosh, T.J., Costello, M.J. 1982. On the structural organization of isolated bovine lens fiber junctions.J. Cell Biol. 93:175–189

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikaido, H., Rosenberg, E.Y. Functional reconstitution of lens gap junction proteins into proteoliposomees. J. Membrain Biol. 85, 87–92 (1985). https://doi.org/10.1007/BF01872008

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872008

Key Words

Navigation