Skip to main content
Log in

Mechanism of aldosterone-induced increase of K+ conductance in early distal renal tubule cells of the frog

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Isolated early distal tubule cells (EDC) of frog kidney were incubated for 20–28 hr in the presence of aldosterone and then whole-cell K+ currents were measured at constant intracellular pH by the whole-cell voltage-clamp technique. Aldosterone increased barium-inhibitable whole-cell K+ conductance (gK+) threefold. This effect was reduced by amiloride and totally abolished by ouabain. However, aldosterone could still raisegK+ in ouabain-treated cells in the presence of furosemide.

We tested whether changes in intracellular pH (pH i ) could be a signal for cells to regulategK+. After removal of aldosterone, the increase ingK+ was preserved by subsequent incubation for 8 hr at pH 7.6 but abolished at pH 6.6. In the complete absence of aldosterone, incubation of cells at pH 8.0 for 20–28 hr raised pH i and doubledgK+.

Using the patch-clamp technique, three types of K+-selective channels were identified, which had conductances of 24, 45 and 59 pS.

Aldosterone had no effect on the conductance or open probability (P o) of any of the three types of channels. However, the incidence of observing type II channels was increased from 4 to 22%. Type II channels were also found to be pH sensitive,P o was increased by raising pH.

These results indicate that prolonged aldosterone treatment raises pH i and increasesgK+ by promoting insertion of K+ channels into the cell membrane. Channel insertion is itself triggered by raising both pH i and increasing the activity of the Na+/K+ pump in early distal cells of frog kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpern, R.J. 1985. Mechanism of basolateral membrane H+/OH/HCO 3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process.J. Gen. Physiol. 86:613–636

    PubMed  Google Scholar 

  2. Boyarski, G., Ganz, M.B., Sterzel, B., Boron, W.F. 1988. pH regulation in single glomerular mesangial cells. I. Acid extrusion in absence and presence of HCO 3 .Am. J. Physiol. 225:C844-C856

    Google Scholar 

  3. Cook, D.L., Ikeuchi, M., Fujimoto, W.Y. 1984. Lowering of pH i inhibits Ca2+-activated K+ channels in pancreatic B-cells.Nature (London) 311:269–271

    Google Scholar 

  4. Fanestil, D.D., Park, C.S. 1981. Steroid hormones and the kidney.Anuu. Rev. Physiol. 43:637–649

    Google Scholar 

  5. Field, M.J., Stanton, B.A., Giebisch, G.H. 1984. Differential acute effect of aldosterone, dexamethasone, and hyperkalemia on distal tubular potassium secretion in the rat kidney.J. Clin. Invest. 74:1792–1802

    PubMed  Google Scholar 

  6. Findlay, I., Dunne, M.J., Petersen, O.H. 1985. ATP-sensitive inward rectifier and voltage- and calcium-activated K+ channels in cultured pancreatic islet cells.J. Membrane Biol. 88:165–172

    Google Scholar 

  7. Frindt, G., Palmer, L.G. 1987. Ca-activated K channels in apical membrane of mammalian CCT, and their role in K secretion.Am. J. Physiol. 252:F458-F467

    PubMed  Google Scholar 

  8. Garg, L.C., Knepper, M.A., Burg, M.B. 1981. Mineralocorticoid effects on Na−K-ATPase in individual nephron segments.Am. J. Physiol. 240:536–544

    Google Scholar 

  9. Gögelein, H., Greger, R. 1987. Properties of single K+ channels in the basolateral membrane of rabbit proximal straight tubules.Pfluegers Arch. 410:288–295

    Google Scholar 

  10. Greger, R. 1985. Ion transport mechanisms in thick ascending limb of Henle's loop of mammalian nephron.Physiol. Rev. 65:760–797

    PubMed  Google Scholar 

  11. Greger, R., Schlatter, E. 1983. Cellular mechanism of the action of loop diuretics on the thick ascending limb of Henle's loop.Klin. Wochenschr. 61:1019–1027

    Article  PubMed  Google Scholar 

  12. Guggino, S.E., Suarez-Isla, B.A., Guggino, W.B., Sacktor, B. 1985. Forskolin and antidiuretic hormone stimulate a Ca2+-activated K+ channel in cultured kidney cells.Am. J. Physiol. 249:F448-F455

    Google Scholar 

  13. Guggino, W.B., Oberleithner, H., Giebisch, G. 1985. Relationship between cell volume and ion transport in the early distal tubule of theAmphiuma kidney.J. Gen. Physiol. 86:31–58

    PubMed  Google Scholar 

  14. Guggino, W.B., Oberleithner, H., Giebisch, G. 1988. The amphibian diluting segment.Am. J. Physiol. 254:F615-F627

    PubMed  Google Scholar 

  15. Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pfluegers Arch. 391:85–100

    Article  Google Scholar 

  16. Hamilton, K.L., Eaton, D.C. 1985. Single-channel recordings from amiloride-sensitive epithelial sodium channel.Am. J. Physiol. 249:C200-C207

    PubMed  Google Scholar 

  17. Hayhurst, R.A., O'Neil, R.G. 1988. Time-dependent actions of aldosterone and amiloride on Na+−K ATPase of cortical collecting duct.Am. J. Physiol. 254:F689-F696

    PubMed  Google Scholar 

  18. Henderson, R.M., Graf, J., Boyer, J.L. 1987. Na−H exchange regulates intracellular pH in isolated rat hepatocyte couplets.Am. J. Physiol. 252:G109-G113

    PubMed  Google Scholar 

  19. Hunter, M., Kawahara, K., Giebisch, G.H. 1986. Potassium channels along the nephron.Fed. Proc. 45:2723–2726

    PubMed  Google Scholar 

  20. Hunter, M., Lopes, A.G., Boulpaep, E.L., Giebisch, G.H. 1986. Regulation of single Potassium ion channels from apical membrane of rabbit collecting tubule.Am. J. Physiol. 251:725–733

    Google Scholar 

  21. Hunter, M., Oberleithner, H., Henderson, R.M., Giebisch, G. 1988. Whole-cell potassium currents in single early distal tubule cells.Am. J. Physiol. 255:F699-F703

    PubMed  Google Scholar 

  22. Josephson, I.R., Brown, A.M. 1986. Inwardly rectifying single-channel and whole cell K+ currents in rat ventricular myocytes.J. Membrane Biol. 94:19–35

    Google Scholar 

  23. Marver, D. 1984. Evidence of corticosteroid action along the nephron.Am. J. Physiol. 246:F111-F123

    PubMed  Google Scholar 

  24. Mujais, S.K. 1988. Renal memory after potassium adaptation: Role of Na+−K+ ATPase.Am. J. Physiol. 254:F840-F850

    Google Scholar 

  25. Mujais, S.K., Chekai, A., Jones, W.J., Hayslett, J.P., Katz, A.I. 1985. Modulation of renal sodium-potassium-adenosine triphosphatase by aldosterone.J. Clin. Invest. 76:170–176

    PubMed  Google Scholar 

  26. Oberleithner, H., Dietl, P., Muenich, G., Weigt, M., Schwab, A. 1985. Relationship between luminal Na+/H+ exchange and luminal K+ conductance in diluting segment of frog kidney.Pfluegers Arch. 405:S110-S113

    Google Scholar 

  27. Oberleithner, H., Giebisch, G., Lang, F., Wang, W. 1982. Cellular mechanism of the furosemide sensitive transport system in the kidney.Klin. Wochenschr. 60:1173–1179

    PubMed  Google Scholar 

  28. Oberleithner, H., Guggino, W.B., Giebisch, G. 1983. Potassium transport in the early distal tubule ofAmphiuma kidney: Effect of potassium adaptation.Pfluegers Arch. 396:185–191

    Google Scholar 

  29. Oberleithner, H., Kersting, U., Hunter, M. 1988. Cytoplasmic pH determines K+ conductance in fused renal epithelial cells.Proc. Natl. Acad. Sci. 85:8345–8349

    PubMed  Google Scholar 

  30. Oberleithner, H., Kersting, U., Silbernagl, S., Steigner, W., Vogel, U. 1989. Fusion of cultured dog kidney (MDCK) cells: II. Relationship between cell pH and K+ conductance in response to aldosterone.J. Membrane Biol. 111:49–56

    Google Scholar 

  31. Oberleithner, H., Lang, F., Wang, W., Messner, G., Deetjen, P. 1983. Evidence for an amiloride sensitive Na+ pathway in the amphibian diluting segment induced by K+ adaptation.Pfluegers Arch. 399:166–172

    Google Scholar 

  32. Oberleithner, H., Muenich, G., Schwab, A., Dietl, P. 1986. Amiloride reduces potassium conductance in frog kidney via inhibition of Na+−K+ exchange.Am. J. Physiol. 251:F66-F73

    PubMed  Google Scholar 

  33. Oberleithner, H., Schmidt, B., Dietl, P. 1986. Fusion of renal epithelial cells: A model for studying cellular mechanism of ion transport.Proc. Natl. Acad. Sci. USA 83:3547–3551

    PubMed  Google Scholar 

  34. Oberleithner, H., Weigt, M., Westphale, H.-J., Wang, W. 1987. Aldosterone activates Na+/H+ exchange and raises cytoplasmic pH in target cells of the amphibian kidney.Proc. Natl. Acad. Sci. USA 84:1464–1468

    PubMed  Google Scholar 

  35. Palmer, L.G., Frindt, G. 1986. Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule.Proc. Natl. Acad. Sci. USA 83:2767–2770

    PubMed  Google Scholar 

  36. Palmer, L.G., Li, J.H.-Y., Lindemann, B., Edelman, I.S. 1982. Aldosterone control of the density of sodium channels in the toad urinary bladder.J. Membrane Biol. 64:91–102

    Google Scholar 

  37. Parent, L., Cardinal, J., Sauve, R. 1988. Single-Channel analysis of a K channel at the basolateral membrane of rabbit proximal convoluted tubule.Am. J. Physiol. 254:F105-F113

    PubMed  Google Scholar 

  38. Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through”.Am. J. Physiol. 241:579–590

    Google Scholar 

  39. Soltoff, S.P., Mandel, L.J. 1983. Amiloride directly inhibits the Na, K-ATPase activity of rabbit kidney proximal tubules.Science 220:957–959

    PubMed  Google Scholar 

  40. Stokes, J.B. 1985. Mineralocorticoid effect on K+ permeability of the rabbit cortical collecting tubule.Kidney Int. 28:640–645

    PubMed  Google Scholar 

  41. Thomas, J.A., Buchsbaum, R.N., Zimniak, A., Racker, E. 1979. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generatedin situ.Biochemistry 81:2210–2218

    Google Scholar 

  42. Vergara, C., Latorre, R. 1983. Kinetics of Ca2+-activated K+ channels from rabbit muscle incorporated into planar bilayers. Evidence for a Ca2+ and Ba2+ blockade.J. Gen. Physiol. 82:543–568

    Google Scholar 

  43. Wang, W., Dietl, P., Oberleithner, H. 1987. Evidence for Na+ dependent rheogenic HCO 3 transport in fused cells of frog distal tubules.Pfluegers Arch. 408:291–299

    Google Scholar 

  44. Wang, W., Dietl, P., Silbernagl, S., Oberleithner, H. 1987. Cell membrane potential: A signal to control intracellular pH and transepithelial hydrogen ion secretion in frog kidney.Pfluegers Arch. 409:289–295

    Google Scholar 

  45. Wang, W., Messner, G., Oberleithner, H., Lang, F., Deetjen, J. 1984. The effect of ouabain on intracellular activities of K+, Na+, Cl, H+, and Ca2+ in proximal tubules of frog kidneys.Pfluegers Arch. 401:6–13

    Google Scholar 

  46. Weigt, M., Dietl, P., Silbernagl, S., Oberleithner, H. 1987. Activation of luminal Na+/H+ exchange in distal nephron of frog kidney: An early response to aldosterone.Pfluegers Arch. 408:609–614

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Present address: Department of Physiology, The University of Leeds, Leeds, LS2 9NQ, England

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Henderson, R.M., Geibel, J. et al. Mechanism of aldosterone-induced increase of K+ conductance in early distal renal tubule cells of the frog. J. Membrain Biol. 111, 277–289 (1989). https://doi.org/10.1007/BF01871012

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871012

Key Words

Navigation