Skip to main content
Log in

Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and-insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We have measured Ca2+ uptake and Ca2+ release in isolated permeabilized pancreatic acinar cells and in isolated membrane vesicles of endoplasmic reticulum prepared from these cells. Ca2+ uptake into cells was monitored with a Ca2+ electrode, whereas Ca2+ uptake into membrane vesicles was measured with45Ca2+. Using inhibitors of known action, such as the H+ ATPase inhibitors NBD-Cl and NEM, the Ca2+ ATPase inhibitor vanadate as well as the second messenger inositol 1,4,5-trisphosphate (IP3) and its analog inositol 1,4,5-trisphosphorothioate (IPS3), we could functionally differentiate two non-mitochondrial Ca2+ pools. Ca2+ uptake into the IP3-sensitive Ca2+ pool (IsCaP) occurs by a MgATP-dependent Ca2+ uptake mechanism that exchanges Ca2+ for H+ ions. In the absence of ATP Ca2+ uptake can occur to some extent at the expense of an H+ gradient that is established by a vacuolar-type MgATP-dependent H+ pump present in the same organelle. The other Ca2+ pool takes up Ca2+ by a vanadate-sensitive Ca2+ ATPase and is insensitive to IP3 (IisCaP). The IsCaP is filled at “higher” Ca2+ concentrations (∼10−6 mol/liter) which may occur during stimulation. The low steady-state [Ca2+] of ∼10−7 mol/liter is adjusted by the IisCaP.

It is speculated that both Ca2+ pools can communicate with each other, the possible mechanism of which, however, is at present unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Awqati, Q. 1986. Proton-translocating ATPases.Annu. Rev. Cell Biol. 2:179–199

    Google Scholar 

  2. Amsterdam, A., Jamieson, J.D. 1972. Structural and functional characterization of isolated pancreatic exocrine cells.Proc. Natl. Acad. Sci. USA 69:3028–3032

    Google Scholar 

  3. Bais, R. 1975. A rapid and sensitive radiometric assay for adenosine triphosphatase activity using cerenkov radiation.Anal. Biochem. 63:271–273

    Google Scholar 

  4. Bayerdörffer, E., Streb, H., Eckhardt, L., Haase, W., Schulz, I. 1984. Characterization of calcium uptake into rough endoplasmic reticulum of rat pancreas.J. Membrane Biol. 81:69–82

    Google Scholar 

  5. Berridge, M.J., Irvine, R.F. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction.Nature (London) 312:315–321

    Google Scholar 

  6. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72:248–254

    Google Scholar 

  7. Breemen, C., van Cauvin, C., Johns, A., Leijten, P., Yamamoto, H. 1986. Ca2+ regulation of vascular smooth muscle.Fed. Proc. 45:2746–2751

    Google Scholar 

  8. Burgess, G.M., Irvine, R.F., Berridge, M.J., McKinney, J.S., Putney, J.W., Jr. 1984. Actions of inositol phosphates on Ca2+ pools in guinea-pig hepatocytes.Biochem. J. 224:41–746

    Google Scholar 

  9. Carafoli, E. 1987. Intracellular calcium homeostasis.Annu. Rev. Biochem. 56:395–433

    Google Scholar 

  10. Cooke, A.M., Gigg, R., Potter, B.V.L. 1987. Myo-inositol 1,4,5-tris-phosphorothioate.: A novel analogue of a biological second messenger.J. Chem. Soc. Commun. 698:1525–1526

    Google Scholar 

  11. Cooke, A.M., Nahorski, S.R., Potter, B.V.L. 1989.FEBS Lett. (in press)

  12. Haynes, D.H. 1983. Mechanism of Ca2+ transport by Ca2+−Mg2+-ATPase pump: Analysis of major states and pathways.Am. J. Physiol. 244:G3-G12

    Google Scholar 

  13. Imamura, K., Schulz, I. 1985. Phosphorylated intermediate of (Ca2++K+)-stimulated Mg2+-dependent transport ATPase in endoplasmic reticulum from rat pancreatic acinar cells.J. Biol. Chem. 260:11339–11347

    Google Scholar 

  14. Irvine, R.F., Moor, R.M., Pollock, W.K., Smith, P.M., Wreggett, K.A. 1988. Inostiol phosphates: Proliferation, metabolism and function.Phil. Trans. R. Soc. (London) B 320:281–298

    Google Scholar 

  15. Kemmer, T.P., Bayerdörffer, E., Will, H., Schulz, I. 1987. Anion dependence of Ca2+ transport and (Ca2++K+)-stimulated Mg2+-dependent transport ATPase in rat pancreatic endoplasmic reticulum.J. Biol. Chem. 262:13758–13764

    Google Scholar 

  16. Mellman, I., Fuchs, R., Helenius, A. 1986. Acidification of The endocytotic and exocytotic pathways.Annu. Rev. Biochem. 55:663–700

    Google Scholar 

  17. Mullaney, J.M., Chueh, S.-H., Ghosh, T.K., Gill, D.L. 1987. Intracellular calcium uptake activated by GTP.J. Biol. Chem. 262:13865–13872

    Google Scholar 

  18. Mullaney, J.M., Yu, M., Ghosh, T.K., Gill, D.L. 1988. Calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism.Proc. Natl. Acad. Sci. USA 85:2499–2503

    Google Scholar 

  19. Ochs, D.L., Korenbrot, J.I., Williams, J.A. 1983. Intracellular free calcium concentrations in isolated pancreatic acini: Effects of secretagogues.Biochem. Biophys. Res. Commun. 117:122–128

    Google Scholar 

  20. Rudnick, G. 1986. ATP-driven H+ pumping into intracellular organelles.Annu. Rev. Physiol. 48:403–413

    Google Scholar 

  21. Schäfer, R., Christian, A.-L., Schulz, I. 1988. Photoaffinity labeling with GTP-γ-azidoanilide of a cholera toxin-sensitive 40 kDa protein from pancretic acinar cells.Biochem. Biophys. Res. Commun. 155:1051–1059

    Google Scholar 

  22. Schnefel, S., Banfić, H., Eckhardt, L., Schultz, G., Schulz, I. 1988. Acetylcholine and cholecystokinin receptors functionally couple by different G-proteins to phospholipase C in pancreatic acinar cells.FEBS Lett. 230:125–130

    Google Scholar 

  23. Schumaker, K.S., Sze, H. 1985. A Ca2+/H+ antiport system driven by the proton electrochemical gradient of a tonoplast H+-ATPase from oat roots.Plant Physiol. 1111–1117

  24. Schumaker, K.S., Sze, H. 1987. Inositol 1,4,5-trisphosphate releases Ca2+ from vacuolar membrane vesicles of oat roots.J. Biol. Chem. 262:3944–3946

    Google Scholar 

  25. Streb, H., Bayerdörffer, E., Haase, W., Irvine, R.F., Schulz, I. 1984. Effcct of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas.J. Membrane Biol. 81:241–253

    Google Scholar 

  26. Streb, H., Irvine, R.F., Berridge, M.J., Schulz, I. 1983. Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate.Nature (London) 306:67–69

    Google Scholar 

  27. Streb, H., Schulz, I. 1983. Regulation of cytosolic free Ca2+ concentration in acinar cells of rat pancreas.Am. J. Physiol. 245:G347-G357

    Google Scholar 

  28. Taylor, C.W., Berridge, M.J., Brown, K.D., Cooke, A.M., Potter, B.V.L. 1988.Myo-inositol 1,4,5-trisphosphorothioate mobilizes intracellular calcium in Swiss 3T3 cells andXenopus oocytes.Biochem. Biophys. Res. Commun. 150:626–632

    Google Scholar 

  29. Taylor, C.W., Berridge, M.J., Cooke, A.M., Potter, B.V.L. 1989. Inositol 1,4,5-trisphosphorothioate: A stable analogue of inositol 1,4,5-trisphosphate which mobilizes intracellular calcium.Biochem. J. (in press)

  30. Thévenod, F., Kemmer, T.P., Christian, A.L., Schulz, I. 1989. Characterization of MgATP-driven H+ uptake into a microsomal vesicle fraction from rat pancreatic acinar cells.J. Membrane Biol. 107:263–275

    Google Scholar 

  31. Thévenod, F., Schulz, I. 1988. H+-ion dependent calcium uptake into an inositol 1,4,5-trisphosphate sensitive calcium pool from rat parotid gland.Am. J. Physiol. 255:G429-G440

    Google Scholar 

  32. Volpe, P., Krause, K.-H., Hashimoto, S., Zorzato, F., Pozzan, T., Meldolesi, J., Lew, D.P. 1988. “Calciosome,” a cytoplasmic organelle: The inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells?Proc. Natl. Acad. Sci USA 85:1091–1095

    Google Scholar 

  33. Willcocks, A.L., Potter, B.V.L., Cooke, A.M., Nahorski, S.R. 1988.Myo-inositol 1,4,5-trisphosphorothioate binds to specific3H-inosiiol 1,4,5-trisphosphate sites in rat cerebellum and is resistant to 5-phosphatase.Eur. J. Pharmacol. 155:181–183

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thévenod, F., Dehlinger-Kremer, M., Kemmer, T.P. et al. Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and-insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells. J. Membrain Biol. 109, 173–186 (1989). https://doi.org/10.1007/BF01870856

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870856

Key Words

Navigation