Skip to main content
Log in

Effects of divalent cations on toad end-plate channels

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Miniature end-plate currents (MEPCs) and acetylcholine-induced current fluctuations were recorded in voltageclamped, glycerol-treated toad sartorius muscle fibers in control solution and in solutions with added divalent cations. In isosmotic solutions containing 20mm Ca or Mg, MEPCs had time constants of decay (τ D ) which were about 30% slower than normal. In isotonic Ca solutions (Na-free), greater increases in both τ D and channel lifetime were seen; the null potential was −34 mV, and single-channel conductance decreased to approximately 5 pS. Zn or Ni, at concentrations of 0.1–5mm, were much more effective in increasing τ D than Ca or Mg, although they did not greatly affect channel conductance. The normal temperature and voltage sensitivity of τ was not significantly altered by any of the added divalent cations. Surface potential shifts arising from screening of membrane fixed charge by divalent cations cannot entirely explain the observed increases in τ, especially when taken together with changes in channel conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D.J., Dwyer, T.M., Hille, B. 1980. The permeability of end-plate channels to monovalent and divalent metal cations.J. Gen. Physiol. 75:493–510

    PubMed  Google Scholar 

  • Adams, P.R. 1976. Drug blockade of open end-plate channels.J. Physiol. (London) 260:531–552

    Google Scholar 

  • Adams, P.R., 1977. Voltage jump analysis of procaine action at frog end-plate.J. Physiol. (London) 268:291–318

    Google Scholar 

  • Adams, P.R., Sakmann, B. 1978. Decamethonium both opens and blocks end-plate channels.Proc. Natl. Acad. Sci. USA 75:2994–2998

    PubMed  Google Scholar 

  • Anderson, C.R., Stevens, C.F. 1973. Voltage clamp analysia of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction.J. Physiol. (London) 235:655–691

    Google Scholar 

  • Armstrong, C.M. 1975. Channels and voltage dependent gates in nerve.In: Membranes — A Series of Advances. Artificial and Biological Membranes. G. Eisenman, editor. Vol. 3, pp. 325–358. Marcel Dekker, N.Y.

    Google Scholar 

  • Armstrong, C.M., Gilly, W.F. 1979. Fast and slow steps in the activation of sodium channels.J. Gen. Physiol. 74:691–711

    PubMed  Google Scholar 

  • Ascher, P., Marty, A., Neild, T.O. 1978. Lifetime and elementary conductance of the channels mediating the excitatory effects of acetylcholine inAplysia neurones.J. Physiol. (London) 278:177–206

    Google Scholar 

  • Bamberg, E., Läuger, P. 1977. Blocking of the Gramicidin channel by divalent cations.J. Membrane Biol. 35:351–375

    Google Scholar 

  • Barry, P.H., Gage, P.W., Van Helden, D.F. 1979a. Cation permeation at the amphibian motor end-plate.J. Membrane Biol. 45:245–276

    Google Scholar 

  • Barry, P.H., Gage, P.W., Van Helden, D.F. 1979b. Cation permeation through single end-plate channels.Excerpta Med. Int. Congr. Ser. 473:174–184

    Google Scholar 

  • Begenisich, T., Lynch, C. 1974. Effects of internal divalent cations on voltage-clamped squid axons.J. Gen. Physiol. 63:675–689

    Google Scholar 

  • Blaustein, M.P., Goldman, D.E. 1968. The action of certain polyvalent cations on the voltage-clamped lobster axon.J. Gen. Physiol. 51:279–291

    PubMed  Google Scholar 

  • Bregestovski, P.D., Miledi, R., Parker, I. 1979. Calcium conductance of acetylcholine induced end-plate channels.Nature (London) 279:638–639

    Google Scholar 

  • Cohen, I., Van der Kloot, W.G. 1978. Effects of [Ca2+] and [Mg2+] on the decay of miniature end-plate currents.Nature (London) 271:77–79

    Google Scholar 

  • Dwyer, T.M., Adams, D.J., Hille, B. 1980. The permeability of end-plate channels to organic cations in frog muscle.J. Gen. Physiol. 75:469–492

    PubMed  Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A.L. 1957. The action of calcium on the electrical properties of squid axons.J. Physiol. (London) 137:218–244

    Google Scholar 

  • Gage, P.W., McBurney, R.N. 1975. Effects of membrane potential, temperature and neostigmine on the conductance change caused by a quantum of acetylcholine at the toad neuromuscular junction.J. Physiol. (London) 244:385–407

    Google Scholar 

  • Gage, P.W., McBurney, R.N., Van Helden, D.F. 1978. Octanol reduces end-plate channel lifetime.J. Physiol. (London) 274:279–298

    Google Scholar 

  • Gage, P.W., Van Helden, D.F. 1979. Effects of permeant monovalent cations on end-plate channels.J. Physiol. (London) 288:509–528

    Google Scholar 

  • Grahame, D.C. 1947. The electrical double layer and the theory of electrocapillarity.Chem. Rev. 41:441–501

    Article  Google Scholar 

  • Hille, B., Woodhull, A.M., Shapiro, B.I. 1975. Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions and pH.Philos. Trans. R. Soc. London B. 270:301–318

    Google Scholar 

  • Katz, B., Miledi, R. 1969. Spontaneous and evoked activity of motor nerve endings in calcium Ringer.J. Physiol. (London) 203:689–706

    Google Scholar 

  • Katz, B., Miledi, R. 1973. The binding of acetylcholine to receptors and its removal from the synaptic cleft.J. Physiol. (London) 231:549–574

    Google Scholar 

  • Kehoe, J.S. 1972. Ionic mechanisms of a two-component cholinergic inhibition inAplysia neurones.J. Physiol. (London) 225:85–114

    Google Scholar 

  • Kolb, H.A., Bamberg, E. 1977. Influence of membrane thickness and ion concentration on the properties of the Gramicidin A channel. Autocorrelation, spectral power density, relaxation and single channel properties.Biochim. Biophys. Acta 464:127–141

    PubMed  Google Scholar 

  • Lewis, C.A. 1979. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction.J. Physiol. (London) 286:417–445

    Google Scholar 

  • Lewis, C.A., Stevens, C.F. 1979. Mechanism of ion permeation through channels in a postsynaptic membrane.In: Membrane Transport Processes. C.F. Stevens, and R.W. Tsien, editors. Vol. 3, pp. 133–151. Raven Press, N.Y.

    Google Scholar 

  • Linder, T.M., Quastel, D.M.J. 1978. A voltage-clamp study of the permeability change induced by quanta of transmitter at the mouse end-plate.J. Physiol. (London) 281:535–556

    Google Scholar 

  • Magleby, K.L., Stevens, C.F. 1972 A quantitative description of end-plate currents.J. Physiol. (London) 223:173–197

    Google Scholar 

  • Magleby, K.L., Weinstock, M.M. 1980. Nickel and calcium ions modify the characteristics of the acetylcholine receptor-channel complex at the frog neuromuscular junction.J. Physiol. (London) 299:203–218

    Google Scholar 

  • Mallart, A., Molgó, J. 1978. The effects of pH and curare on the time course of end-plate currents at the neuromuscular junction of the frog.J. Physiol. (London) 276:343–352

    Google Scholar 

  • Marchais, D., Marty, A. 1979. Interaction of permeant ions with channels activated by acetylcholine inAplysia neurones.J. Physiol. (London) 297:9–45

    Google Scholar 

  • McLaughlin, S.G.A., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667–687

    PubMed  Google Scholar 

  • Miledi, R., Parker, I. 1980. Effects of strontium ions on end-plate channel properties.J. Physiol. (London) 306:567–577

    Google Scholar 

  • Neher, E., Steinbach, J.H. 1978. Local anaesthetics transiently block currents through single acetylcholine channels.J. Physiol. (London) 277:153–176

    Google Scholar 

  • Nonner, W., Adams, D.J., Dwyer, T.M., Hille, B. 1980. Conductance fluctuation measurements with organic cations at the end-plate channel.Fed. Proc. 39:2064

    Google Scholar 

  • Rang, H.P. 1975. Acetylcholine receptors.Quart. Rev. Biophys. 7:283–399

    Google Scholar 

  • Ruff, R.L. 1977. A quantitative analysis of local anaesthetic alteration of miniature end-plate currents and end-plate current fluctuations.J. Physiol. (London) 264:89–124

    Google Scholar 

  • Scuka, M. 1975. The amplitude and the time course of the end-plate current at various pH levels in the frog sartorius muscle.J. Physiol. (London) 249:183–195

    Google Scholar 

  • Takeda, K., Barry, P.H., Gage, P.W. 1980a. Effects of ammonium ions on end-plate channels.J. Gen. Physiol. 75:589–613

    PubMed  Google Scholar 

  • Takeda, K., Barry, P.H., Gage, P.W. 1980b. Divalent cations lengthen channel lifetime at the toad neuromuscular junction.Proc. Aust. Soc. Biophys. 4:2A

    Google Scholar 

  • Takeda, K., Datyner, N.B., Barry, P.H., Gage, P.W. 1978. Postsynaptic effects of Zn2+ at the motor end-plate.Proc. Aust. Physiol. Pharmacol. Soc. 9:126P

    Google Scholar 

  • Takeuchi, A., Takeuchi, N. 1959. Active phase of frog's end-plate potential.J. Neurophysiol. 22:395–411

    PubMed  Google Scholar 

  • Takeuchi, A., Takeuchi, N. 1960. On the permeability of end-plate membrane during the action of transmitter.J. Physiol. (London) 154:52–67

    Google Scholar 

  • Van der Kloot, W.G., Cohen, I. 1979. Membrane surface potential changes may alter drug interactions: An example, acetylcholine and curare.Science 203:1351–1353

    PubMed  Google Scholar 

  • Van Helden, D.F., Hamill, O.P., Gage, P.W. 1977. Permeant cations alter end-plate channel characteristics.Nature (London) 269:711–713

    Google Scholar 

  • Watanabe, S., Narahashi, T. 1979. Cation selectivity of acetylcholine-activated ionic channels of frog end-plate.J. Gen. Physiol. 74:615–628

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, K., Gage, P.W. & Barry, P.H. Effects of divalent cations on toad end-plate channels. J. Membrain Biol. 64, 55–66 (1982). https://doi.org/10.1007/BF01870768

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870768

Key words

Navigation