Skip to main content
Log in

The mechanistic nature of the membrane potential dependence of sodium-sugar cotransport in small intestine

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Methods are described which demonstrate the use of unidirectional influx of14C-tetraphenylphosphonium (14C-TPP+) into isolated intestinal epithelial cells as a quantitative sensor of the magnitude of membrane potentials created by experimentally imposed ion gradients. Using this technique the quantitative relationship between membrane potential (Δψ) and Na+-dependent sugar influx was determined for these cells at various Na+ and α-methylglucoside (α-MG) concentrations. The results show a high degree of Δψ dependence for the transport Michaelis constant but a maximum velocity for transport which is independent of Δψ. No transinhibition by intracellular sugar (40mm) can be detected. Sugar influx in the absence of Na+ is insensitive to 1.3mm phlorizin and independent of Δψ. The mechanistic implications of these results were evaluated using the quality of fit between calculated and experimentally observed kinetic constants for rate equations derived from several transport models. The analysis shows that for models in which translocation is the potential-dependent step the free carrier cannot be neutral. If it is anionic, the transporter must be functionally asymmetric. A model in which Na+ binding is the potential-dependent step (Na+ well concept) also provides an appropriate kinetic fit to the experimental data, and must be considered as a possible mechanistic basis for function of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson, P.S. 1978. Energy-dependence of phlorizin binding to isolated renal microvillus membranes.J. Membrane Biol. 42:81–98

    Google Scholar 

  • Aronson, P.S. 1984. Electrochemical driving forces for secondary active transport: Energetics and kinetics of Na+−H+ exchange and Na+-glucose cotransport.In: Electrogenic Transport: Fundamental Principles and Physiological Implications. M.P. Blaustein and M. Liberman, editors. pp. Raven, New York

    Google Scholar 

  • Caceci, M.S., Cacheris, W.P. 1984. Fitting curves to data. The simplex algorithm is the answer.Byte May issue:340–362

    Google Scholar 

  • Carter-Su, C., Kimmich, G.A. 1979. Membrane potentials and sugar transport by ATP-depleted intestinal cells: Effect of anion gradients.Am. J. Physiol. 6:C67-C74

    Google Scholar 

  • Eyring, H., Lumry, R., Woodbury, J.W., 1949. Some applications of modern rate theory to physiological systems.Rec. Chem. Prog. 10:100–114

    Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance, and rectification in membranes.J. Gen. Physiol. 27–60

  • Gornall, A., Bardawill, C., David, M. 1979. Determination of serum protein by means of the biuret reaction.J. Biol. Chem. 177:751–758

    Google Scholar 

  • Gunther, R.D., Schell, R.E., Wright, E.M. 1984. Ion permeability of rabbit intestinal brush border membrane vesicles.J. Membrane Biol. 78:119–127

    Google Scholar 

  • Hilden, H., Sacktor, B. 1982. Potential-dependentd-glucose uptake by renal brush border membrane vesicles in the absence of sodium.Am. J. Physiol. 242:F340-F345

    Google Scholar 

  • Hopfer, U., Groseclose, R. 1980. The mechanism of Na+-dependentd-glucose transport.J. Biol. Chem. 255:4453–4462

    PubMed  Google Scholar 

  • Kanuitz, J.D., Wright, E.M. 1984. Kinetics of sodiumd-glucose cotransport in bovine intestinal brush border vesicles.J. Membrane Biol. 79:41–51

    Google Scholar 

  • Kessler, M., Semenza, G. 1983. The small intestinal Na+,d-glucose cotransporter: An asymmetric gated channel (or pore) responsive to Δψ.J. Membrane Biol. 76:27–56

    Google Scholar 

  • Kimmich, G.A. 1970. Preparation and properties of mucosal epithelial cells isolated from small intestine of the chicken.Biochemistry 9:3659–3668

    PubMed  Google Scholar 

  • Kimmich, G.A., Randles, J. 1984. Sodium-sugar coupling stoichiometry in chick intestinal cells.Am. J. Physiol. 247:C74-C82

    PubMed  Google Scholar 

  • Kimmich, G.A., Randles, J., Restrepo, D., Montrose, M. 1985a. A new method for determination of relative ion permeabilities in isolated cells.Am. J. Physiol. (in press)

  • Kimmich, G.A., Randles, J., Restrepo, D., Montrose, M. 1985b. The potential dependence of the intestinal Na+-dependent sugar transporter.Ann. N.Y. Acad. Sci. (in press)

  • Maloney, P.C. 1982. Energy coupling to ATP synthesis by the proton-translocating ATPase.J. Membrane Biol. 67:1–12

    Google Scholar 

  • Mitchell, P. 1969. Chemiosmotic coupling and energy transduction.Theor. Exp. Biophys. 2:159–216

    Google Scholar 

  • Murer, M., Hopfer, U. 1974. Demonstration of electrogenic Na+-dependentd-glucose transport in intestinal brush border membranes.Proc. Natl. Acad. Sci. USA 71:484–488

    PubMed  Google Scholar 

  • Picone, A. 1977. Characteristics of amino acid transport in the isolated small intestinal epithelial cell Doctoral dissertation. Department of Radiation Biology and Biophysics, University of Rochester, Rochester, N.Y.

    Google Scholar 

  • Restrepo, D., Kimmich, G.A. 1985a. Kinetic analysis of the mechanism of intestinal Na+-dependent sugar transport.Am. J. Physiol. (in press)

  • Restrepo. D., Kimmich, G.A. 1985b. Electrical potential dependence of Na+-sugar co-transport determined using TPP+ influx.Ann. N.Y. Acad. Sci. (Abstr.) (in press)

  • Rose, R.C., Schultz, S.G. 1971. Studies on the electrical potential profile across rabbit ileum: Effects of sugars and amino acids on transmural and transmucosal electrical potential differences.J. Gen. Physiol 57:639–663

    PubMed  Google Scholar 

  • Schell, R.E., Stevens, B.R., Wright, E.M. 1983. Kinetics of sodium-dependent solute transport by rabbit jejunal brush-border vesicles using a fluorescent dye.J. Physiol. (London) 335:307–318

    Google Scholar 

  • Semenza, G., Kessler, M., Hosang, M., Weber, J., Schmidt, U. 1984. Biochemistry of the Na+,d-glucose cotransporter of the small intestinal brush border membrane. The state of the art in 1984.Biochim. Biophys. Acta 779:343–379

    PubMed  Google Scholar 

  • Semenza, G., Kessler, M., Schmidt, U., Venter, C., Fraser, C. 1985. The small-intestinal sodium-glucose cotransporter(s).Ann. N.Y. Acad. Sci. (in press)

  • Squires, G.L. 1976. Practical Physics. McGraw-Hill, London

    Google Scholar 

  • Tannenbaum, C., Toggenburger, G., Kessler, M., Rothstein, A., Semenza, G. 1977. High-affinity phlorizin binding to brush border membranes from small intestine: Identity with (a part of) the glucose transport system, dependence on the Na+ gradient, partial purification.J. Supramol. Struct. 6:519

    PubMed  Google Scholar 

  • Toggenburger, G., Kessler, M., Rothstein, A., Semenza, G., Tannenbaum, C. 1978. Similarity in effects of Na+ gradients and membrane potentials ond-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rabbit intestinal mucosal cells.J. Membrane Biol. 40:269–290

    Google Scholar 

  • Toggenburger, G., Kessler, M., Semenza, G. 1982. Phlorizin as a probe of the small intestinal Na+,d-glucose cotransporter. A model.Biochim. Biophys. Acta 688:557–571

    PubMed  Google Scholar 

  • Turner, R.J., Silverman, M. 1981. Interaction of phlorizin and sodium with the renal brush-border membraned-glucose transporter: Stoichiometry and order of binding.J. Membrane Biol. 58:43–55

    Google Scholar 

  • White, J. F., Armstrong, W. McD. 1971. Effect of transported solutes on membrane potentials in bullfrog small intestine.Am. J. Physiol. 221:914–201

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Restrepo, D., Kimmich, G.A. The mechanistic nature of the membrane potential dependence of sodium-sugar cotransport in small intestine. J. Membrain Biol. 87, 159–172 (1985). https://doi.org/10.1007/BF01870662

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870662

Key Words

Navigation