Skip to main content
Log in

Electrical properties of chloride transport across theNecturus proximal tubule

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The chloride conductance of the basolateral cell membrane of theNecturus proximal tubule was studied using conventional and chloride-sensitive liquid ion exchange microelectrodes. Individual apical and basolateral cell membrane and shunt resistances, transepithelial and basolateral, cell membrane potential differences, and electromotive forces were determined in control and after reductions in extracellular Cl. When extracellular Cl activity is reduced in both apical and basolateral solutions the resistance of the shunt increases about 2.8 times over control without any significant change in cell membrane resistances. This suggests a high Cl conductance of the paracellular shunt but a low Cl conductance of the cell membranes. Reduction of Cl in both bathing solutions or only on the basolateral side hyperpolarizes both the basolateral cell membrane potential difference and electromotive force. Hyperpolarization of the basolateral cell membrane potential difference after low Cl perfusion was abolished by exposure to HCO 3 -free solutions and SITS treatment. In control conditions, intracellular Cl activity was significantly higher than predicted from the equilibrium distribution across both the apical and basolateral cell membranes. Reducing Cl in only the basolateral solution caused a decrease in intracellular Cl. From an estimate of the net Cl flux across the basolateral cell membrane and the electrochemical driving force, a Cl conductance of the basolateral cell membrane was predicted and compared to measured values. It was concluded that the Cl conductance of the basolateral cell membrane was not large enough to account for the measured flux of Cl by electrodiffusion alone. Therefore these results suggest the presence of an electroneutral mechanism for Cl transport across the basolateral cell membrane of theNecturus proximal tubule cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anagnostopoulos, T. 1973. Biionic potentials in the proximal tubule ofNecturus kidney.J. Physiol. (London) 233:375–394

    Google Scholar 

  2. Anagnostopoulos, T. 1977. Electrophysiological study of the antiluminal membrane in the proximal tubule ofNecturus: Effect of inorganic anions and SCN.J. Physiol. (London) 267:89–111

    Google Scholar 

  3. Anagnostopoulos, T., Planelles, G. 1979. Organic anion permeation at the proximal tubule ofNecturus. An electrophysiological study of the peritubular membrane.Pfluegers Arch. 381:231–239

    Article  Google Scholar 

  4. Anagnostopoulos, T., Teulon, J., Edelman, A. 1980. Conductive properties of the proximal tubule inNecturus kidney.J. Gen. Physiol. 75:553–587

    PubMed  Google Scholar 

  5. Anagnostopoulos, T., Velu, E. 1974. Electrical resistance of cell membranes inNecturus kidney.Pfluegers Arch. 346:327–339

    Article  Google Scholar 

  6. Armstrong, W.M., Wojtkowski, W., Bixenman, W.R. 1977. A new solid state microelectrode for measuring intracellular chloride activities.Biochim. Biophys. Acta 465:165–170

    PubMed  Google Scholar 

  7. Asterita, M.F., Boulpaep, E.L. 1975. Ion selectivity of the paracellular pathway inNecturus proximal tubule.(Abstr.) Biophys. J. 15:228a

    Google Scholar 

  8. Biagi, B., Sohtell, M., Giebisch, G. 1980. Effects of bath potassium and pH on intracellular potassium activity in rabbit proximal straight tubule. 13th Annual Meeting of the American Society of Nephrology. Washington, D.C. p. 125A

  9. Boulpaep, E.L. 1967. Ion permeability of the peritubular and luminal membrane of the renal tubular cell.In: Transport and Funktion Intracellulärer Elektrolyte. F. Krück, editor. pp. 98–107. Urban and Schwarzenberg Berlin

    Google Scholar 

  10. Boulpaep, E.L. 1972. Permeability changes of the proximal tubule ofNecturus during saline loading.Am. J. Physiol. 222:517–531

    PubMed  Google Scholar 

  11. Boulpaep, E.L. 1976. Electrical phenomena in the nephron.Kidney Int. 9:88–102

    PubMed  Google Scholar 

  12. Duffey, M.E., Thompson, S.M., Frizzell, R.A., Schultz, S.G. 1979. Intracellular chloride activities and active chloride absorption in the intestinal epithelium of the winter flounder.J. Membrane Biol. 50:331–341

    Article  Google Scholar 

  13. Duffey, M.E., Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport.J. Membrane Biol. 42:229–245

    Article  Google Scholar 

  14. Forster, J., Steels, P.S., Boulpaep, E.L. 1980. Organic substrate effects on and heterogeneity ofNecturus proximal tubule function.Kidney Int. 17:479–490

    PubMed  Google Scholar 

  15. Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride ion transport by epithelial tissues.Am. J. Physiol. 236 (Renal Fluid Electrolyte Physiol.5) F1-F8

    Google Scholar 

  16. Fujimoto, M., Kubota, T. 1976. Physiochemical properties of a liquid ion exchanger microelectrode and its application to biological fluids.Jpn. J. Physiol. 26:631–650

    PubMed  Google Scholar 

  17. Giebisch, G. 1961. Measurements of electrical potential differences on single nephrons of the perfusedNecturus kidney.J. Gen. Physiol. 44:659–678

    PubMed  Google Scholar 

  18. Grandchamp, A., Boulpaep, E.L. 1974. Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubule.J. Clin. Invest. 54:69–82

    PubMed  Google Scholar 

  19. Guggino, W.B., Boulpaep, E.L., Giebisch, G. 1980. Electrical properties of proximal tubule cells of thein vivo perfusedNecturus kidney: Chloride reabsorption.(Abstr.) Fed. Proc. 39:1080

    Google Scholar 

  20. Hodgkin, A.L., Horowicz, P. 1959.The influence of potassium and chloride ions on the membrane potential of single muscle fibers.J. Physiol. (London) 148:127–160

    Google Scholar 

  21. Khuri, R.N., Agulian, S.K. 1975. Electrochemical potentials of chloride in proximal renal tubule ofNecturus maculosus.Comp. Biochem. Physiol. 50A:695–700

    Article  Google Scholar 

  22. Kimura, G., Spring, K.R. 1978. Transcellular and paracellular tracer chloride fluxes inNecturus proximal tubule.Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4):F617-F625

    Google Scholar 

  23. Reuss, L. 1979. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder: III. Ionic permeability of the basolateral cell membrane.J. Membrane Biol. 47:239–259

    Article  Google Scholar 

  24. Reuss, L., Grady, T.P. 1979. Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium.J. Membrane Biol. 51:15–31

    Google Scholar 

  25. Shindo, T., Spring, K.R. 1981. Chloride movement across the basolateral membrane of proximal tubule cells.J. Membrane Biol. 58:35–42

    Google Scholar 

  26. Spring, K.R., Kimura, G. 1978. Chloride reabsorption by renal proximal tubules ofNecturus.J. Membrane Biol. 38:233–254

    Article  Google Scholar 

  27. Steels, P.S., Boulpaep, E.L. 1976. Effect of pH on ionic conductances of the proximal tubule epithelium ofNecturus and the role of buffer permeability.(Abstr.) Fed. Proc. 35:465

    Google Scholar 

  28. Vaughn-Jones, R.D. 1979. Regulation of chloride in quiescent sheepheart Purkinje fibers studies using intracellular chloride and pH-sensitive micro-electrodes.J. Physiol. (London) 295:111–137

    Google Scholar 

  29. Windhager, E.E., Boulpaep, E.L., Giebisch, G. 1966. Electrophysiological studies on single nephrons.Proc. 3rd. Int. Congr. Nephrol. 1:35–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guggino, W.B., Boulpaep, E.L. & Giebisch, G. Electrical properties of chloride transport across theNecturus proximal tubule. J. Membrain Biol. 65, 185–196 (1982). https://doi.org/10.1007/BF01869962

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869962

Key words

Navigation