Skip to main content
Log in

Formation of ion channels by a negatively charged analog of gramicidin a

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

O-pyromellitylgramicidin is a derivative of gramicidin in which three carboxyl groups are introduced at the terminal hydroxyl end of the peptide. Experiments with artificial lipid membranes indicate that this negatively charged analog forms ion-permeable channels in a way similar to that of gramicidin. If O-pyromellitylgramicidin is added to only one aqueous solution, the membrane conductance remains small, but increases by several orders of magnitude if the same amount is also added to the other side. In accordance with the dimer model of the channel, the membrane conductance under symmetrical conditions is proportional to the square of the aqueous concentration of O-pyromellitylgramicidin over a wide range. The ratioΜ PG/Μ G of the single-channel conductance of O-pyromellitylgramicidin to that of gramicidin is close to unity at high ionic strength, but increases more than fivefold at smaller ionic strength (0.01m). This observation is explained in terms of an electrostatic effect of the fixed negative charges localized near the mouth of the channel. In a mixture of O-pyromellitylgramicidin and gramicidin, unit conductance steps of intermediate size are observed in addition to the conductance steps corresponding to the pure compounds, indicating the formation of hybrid channels. Hybrid channels with preferred orientation may be formed if small amounts of gramicidin and O-pyromellitylgramicidin are added to opposite sides of the membrane. These hybrid channels show a distinct asymmetry in the current-voltage characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamberg, E., Benz, R. 1976. Voltage-induced thickness changes of lipid bilayer membranes and the effect of an electric field on gramicidin A channel formulation.Biochim. Biophys. Acta 426:570

    Article  PubMed  CAS  Google Scholar 

  • Bamberg, E., Kolb, H.-A., Läuger, P. 1976. Ion transport through the gramicidin A channel.In: The Structural Basis of Membrane Function. Y. Hatefi and L. Djavadi-Ohaniance, editors. Academic Press, New York

    Google Scholar 

  • Bamberg, E., Läuger, P. 1973. Channel formation kinetics of gramicidin A in lipid bilayer membranes.J. Membrane Biol. 11:177

    Article  CAS  Google Scholar 

  • Bamberg, E., Läuger, P. 1974. Temperature-dependent properties of gramicidin A channels.Biochim. Biophys. Acta 367:127

    Article  PubMed  CAS  Google Scholar 

  • Bamberg, E., Noda, K., Gross, E., Läuger, P. 1975. Single-channel parameters of gramicidin A, B and C.Biochim. Biophys. Acta 419:223

    Google Scholar 

  • Benz, R., Stark, G., Janko, K., Läuger, P. 1973. Valinomycin-mediated ion transport through neutral lipid membranes: Influence of hydrocarbon chain length and temperature.J. Membrane Biol. 14:339

    Article  CAS  Google Scholar 

  • Brown, R.H., Jr. 1974. Membrane surface charge: Discrete and uniform modelling.Progr. Biophys. Mol. Biol. 28:341

    Article  Google Scholar 

  • Cole, K.S. 1969. Zeta potential and discretevs. uniform charges.Biophys. J. 9:465

    Article  PubMed  CAS  Google Scholar 

  • Drouin, H., Neumcke, B. 1974. Specific and unspecific charges at the sodium channels of the nerve membrane.Pfluegers Arch. 351:207

    Article  CAS  Google Scholar 

  • Hille, B., Woodhull, A.M., Shapiro, B.I. 1975. Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions, and pH.Philos. Trans. R. Soc. B 270:301

    Article  CAS  Google Scholar 

  • Hladky, S.B., Haydon, D.A. 1970. Discreteness of conductance changes in bimolecular lipid membranes in the presence of certain antibiotics.Nature (London) 225:451

    Article  CAS  Google Scholar 

  • Hladky, S.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel.Biochim. Biophys. Acta 274:294

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H.-A., Bamberg, E. 1976. Influence of Membrane Thickness and ion concentration on the properties of the gramicidin A channel: Autocorrelation, spectral power density, relaxation and single channel studies.Biochim. Biophys. Acta (in press)

  • Kolb, H.-A., Läuger, P., Bamberg, E. 1975. Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels.J. Membrane Biol. 20:133

    Article  CAS  Google Scholar 

  • Läuger, P. 1976. Diffusion-limited ion flow through pores.Biochim. Biophys. Acta (in press)

  • Läuger, P., Lesslauer, W., Marti, E., Richter, J. 1967. Electrical properties of bimolecular phospholipid membranes.Biochim. Biophys. Acta 135:20

    Article  PubMed  Google Scholar 

  • Maxwell, W.R., Partington, J.R. 1937. The dissociation constants of some polybasic acids. Part III.Trans. Faraday Soc. 33:670

    Article  CAS  Google Scholar 

  • Nelson, A.P., McQuarrie, D.A. 1975. The effect of discrete charges on the electrical properties of a membrane.J. Theor. Biol. 55:13

    Article  PubMed  CAS  Google Scholar 

  • Ovchinnikov, Yu.A. 1972. Structure and membrane activity of peptide ionophores.In: Federation of European Biochemical Societies, 8th Meeting, Vol. 28, p. 279ff. North Holland, Amsterdam

    Google Scholar 

  • Tosteson, D.C., Andreoli, T.E., Tieffenberg, M., Cook, P. 1968. The effects of macrocyclic compounds on cation transport in sheep red cells and thin and thick lipid membranes.J. Gen. Physiol. 51:373S

    Google Scholar 

  • Urry, D.W. 1971. The gramicidin A transmembrane channel: A proposedπ (L,D) helix.Proc. Nat. Acad. Sci. 68:672

    Article  PubMed  CAS  Google Scholar 

  • Urry, D.w. 1972. A molecular theory of ion-conducting channels: A field-dependent transition between conducting and nonconducting conformations.Proc. Nat. Acad. Sci. 69:1610

    Article  PubMed  CAS  Google Scholar 

  • Veatch, W.R. 1976. The structure of the Gramicidin A trans-membrane Channel20th Annu. Meet. Biophys. Soc. (Abstr.)

  • Veatch, W.R., Fossel, E.T., Blout, E.R. 1974. The conformation of gramicidin A. Biochemistry13:5249

    Article  PubMed  CAS  Google Scholar 

  • Veatch, W.R., Mathies, R., Eisenberg, M., Stryer, L. 1976. Simultaneous fluorescence and conduction studies of planar bilayer membranes containing a highly active and fluorescent analog of gramicidin A. J. Mol. Biol.99:75

    Article  Google Scholar 

  • Veatch, W.R., Stryer, L. 1976. The dimeric nature of the gramicidin A transmembrane channel, conductance and fluorescence energy tranfer studies of hybrid channels.J. Mol. Biol. (in press)

  • Woodhull, A.M. 1973. Ionic blockage of sodium channels in nerve.J. Gen. Physiol. 61:687

    Article  PubMed  CAS  Google Scholar 

  • Zingsheim, H.P., Neher, E. 1974. The equivalence of fluctuation analysis and chemical relaxation experiments: A kinetic study of ion pore formation in thin lipid membranes.Biophys. Chem. 2:197

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Apell, H.J., Bamberg, E., Alpes, H. et al. Formation of ion channels by a negatively charged analog of gramicidin a. J. Membrain Biol. 31, 171–188 (1977). https://doi.org/10.1007/BF01869403

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869403

Keywords

Navigation