Skip to main content
Log in

Na−K−2Cl cotransport in winter flounder intestine and bovine kidney outer medulla: [3H] bumetanide binding and effects of furosemide analogues

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effects of several sulfamoyl benzoic acid derivatives on Na−K−Cl cotransport were investigated in winter flounder intestine. The relative efficacy (IC50 values) and order of potency of these derivatives were benzmetanide, 5×10−8 m> bumetanide 3×10−7 m>piretanide 3×10−6 m>furosemide 7×10−6 m> amino piretanide 1×10−5 3-amino-4-penoxy-5-sulfamoyl benzoic acid. Binding of [3H] bumetanide was studied in microsomal membranes from winter flounder intestine and compared to that in bovine kidney outer medulla. Binding was also studied in brush-border membranes from winter flounder intestine. The estimated values forK d and number of binding sites (n) were: bovine kidney,K d =1.6×10−7,n=10.5 pmol/mg protein; winter flounder intestine,K d 1.2×10−7,n=7.3 pmol/mg protein, and brush-border membranes from winter flounder,K d =5.3×10−7,n=20.4 pmol/mg protein. The estimatedK d for bumetamide binding to winter flounder brush-border membranes derived from association and dissociation kinetics was 6.8×10−7 m. The similarity in magnitudes of IC50 andK d for bumetanide suggests that the brush-border cotransporter is ordinarily rate-limiting for transmural salt absorption and that bumetanide specifically binds to the cotransporter. Measurement of bumetanide binding at various concentrations of Na, K and Cl showed that optimal binding required all three ions to be present at about 5mm concentrations. Higher Na and K concentrations did not diminish binding but higher Cl concentrations (up to 100mm Cl) inhibited bumetanide binding by as much as 50%. Still higher Cl concentrations (500 and 900mm) did not further inhibit bumetanide binding. Scatchard analysis of bumetanide binding at 5 and 100mm Cl concentrations showed that bothK d andn were lower at the higher Cl concentration (5mm Cl:K d =5.29×10−7 m,n=20.4 pmol/mg protein; 100mm Cl:K d =2.3×10−7 m,n=8.8 pmol/mg protein). These data suggest two possibilities: that bumetanide and Cl binding are not mutually exclusive (in contrast to pure competitive inhibition) and that they each bind to separate sites or that two distinct bumetanide binding sites exist, only one of which exhibits Cl inhibition of binding. This inhibition would then be consistent with a competitive interaction with Cl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, C.D.A., Murer, H. 1985. Characterization of a Na∶K∶2Cl cotransport system in the apical membrane of a renal epithelial cell line (LLC-PKi)J. Membrane Biol. 87:131–139

    Google Scholar 

  2. Field, M., Karnaky, K.J., Jr., Smith, P.L., Bolton, J.E., Kinter, W.B. 1978. Ion transport across the isolated intestinal mucosa of the winter flounder,Pseudopleuronectes americanus: I. Functional and structural properties of cellular and paracellular pathways for Na and Cl.J. Membrane Biol. 41:265–293

    Google Scholar 

  3. Forbush, B., Palfrey, H.C. 1983. [3H] Bumetanide binding to membranes isolated from dog kidney outer medulla.J. Biol. Chem. 258:11787–11792

    PubMed  Google Scholar 

  4. Frizzell, R.A., Halm, D.R., Musch, M.W., Stewart, C.P., Field, M. 1984. Potassium transport by flounder intestinal mucosa.Am. J. Physiol. 246:F946-F951

    Google Scholar 

  5. Frizzell, R.A., Smith, P.L., Vosburgh, E., Field, M. 1979. Coupled sodium-chloride influx across brush border of flounder intestine.J. Membrane Biol. 46:27–39

    Google Scholar 

  6. Greger, R., Schlatter, E. 1983. Cellular mechanism of the action of loop diuretics on the thick ascending limb of Henle's loop.Klin. Wochenschr. 61:1019–1027

    Article  PubMed  Google Scholar 

  7. Greger, R., Schlatter, F. 1984. Mechanism of NaCl secretion in rectal gland tubules of spring dog fish (Squalus acanthias).Pfluegers Arch. 402:364–375

    Article  Google Scholar 

  8. Haas, M., McManus, T.J. 1983. Bumetanide inhibits (Na+K+2Cl) cotransport at a Cl site.Am. J. Physiol. 245:C235-C240

    Google Scholar 

  9. Hall, A.C., Ellory, J.C. 1985. Measurements and stoichiometry of bumetanide-sensitive (2Na∶1K∶3Cl) cotransport in ferret red cells.J. Membrane Biol. 85:205–213

    Google Scholar 

  10. Halm, D.R., Krasny, E.J., Frizzell, R.A. 1985. Electrophysiology of flounder intestinal mucosa: Relation of the electrical potential profile to coupled NaCl absorption.J. Gen. Physiol. 85:865–883

    PubMed  Google Scholar 

  11. Jorgensen, P.L., Peterson, J., Rees, W.D. 1984. Identification of a Na−K−Cl cotransport protein Mr 34000 from kidney by photo labelling with [3H] bumetanide.Biochim. Biophys. Acta 775:105–110

    Google Scholar 

  12. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1957. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:256–275

    Google Scholar 

  13. Ludens, J.H. 1982. Nature of the inhibition of Cl transport by furosemide: Evidence for competitive inhibition of active transport in toad cornea.J. Exp. Pharmacol. Ther. 223:25–29

    Google Scholar 

  14. Musch, M.W., Orellana, S.A., Kimberg, L.S., Field, M., Halm, D.R., Krasny, E.J., Frizzell, R.A. 1982. Na−K−Cl cotransport in the intestine of a marine teleost.Nature (London) 300:351–353

    Google Scholar 

  15. O'Grady, S.M., Field, M., Nash, N.T., Rao, M. 1985. Atrial natriuretic factor inhibits Na−K−2Cl cotransport in flounder intestine.Am. J. Physiol. 249:C531-C535

    PubMed  Google Scholar 

  16. O'Grady, S.M., Musch, M.W., Field M. 1986. Stoichiometry and ion affinities of the Na−K−Cl cotransport system in the intestine of the winter flounder. (Pseudopleuronectes americanus)91:33–41

    Google Scholar 

  17. Owen, N.E., Prastan, M.L. 1985. Na−K−Cl cotransport in cultured human fibroblasts.J. Biol. Chem. 260:1445–1451

    PubMed  Google Scholar 

  18. Palfrey, H.C., Alper, S.L., Greengard, P. 1980. Protein phosphorylation and the regulation of cation cotransport.J. Exp. Biol. 89:103–115

    PubMed  Google Scholar 

  19. Palfrey, H.C., Feit, P.W., Greengard, P. 1980. cAMP-stimulated cation cotransport in avian erythrocytes: Inhibition by “loop” diuretics.Am. J. Physiol. 238:C139-C148

    Google Scholar 

  20. Palfrey, H.C., Greengard, P. 1981. Hormone-sensitive ion transport system in erythrocytes as models for epithelial ion pathways.Ann. N. Y. Acad. Sci. 372:291–308

    PubMed  Google Scholar 

  21. Palfrey, H.C., Silva, P., Epstein, F.H. 1984. Sensitivity of cAMP stimulated salt secretion in shark rectal gland to loop diuretics.Am. J. Physiol. 246:C242-C246

    Google Scholar 

  22. Radian, R., Kanner, B.I. 1985. Reconstitution and purification of the sodium and chloride-coupled aminobutyric acid transporter from rat brain.J. Biol. Chem. 260:11859–11865

    PubMed  Google Scholar 

  23. Rao, M.C., Nash, N.T., Field, M. 1984. Differing effects of cGMP and cAMP on ion transport across flounder intestine.Am. J. Physiol. 246:C167-C171

    PubMed  Google Scholar 

  24. Schlatter, E., Greger, R., Weidtke, C. 1983. Effect of “high ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle's loop of rabbit kidney.Pfluegers Arch. 396:210–217

    Google Scholar 

  25. Toggenburger, G., Kessler, M., Rothstein, A., Semenza, G., Tannenbaum, G. 1978. Similarity in effects of Na+ gradients and membrane potentials ond-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rabbit intestinal mucosal cells.J. Membrane Biol. 40:269–290

    Google Scholar 

  26. Widdicombe, J.H., Nathanson, I.T., Highland, E. 1983. Effects of loop diuretics on ion transport by dog tracheal epithelium.Am. J. Physiol. 245:C388-C396

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Grady, S.M., Palfrey, H.C. & Field, M. Na−K−2Cl cotransport in winter flounder intestine and bovine kidney outer medulla: [3H] bumetanide binding and effects of furosemide analogues. J. Membrain Biol. 96, 11–18 (1987). https://doi.org/10.1007/BF01869330

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869330

Key Words

Navigation