Skip to main content
Log in

Multiple conductance levels of the dihydropyridine-sensitive calcium channel in GH3 cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Calcium channels in GH3 cells exhibit at least five conductance levels when examined in cell-attached or outside-out patches. These channels resemble the high threshold Ca2+ current in their range of activation and inactivation, and in their sensitivity to dihydropyridines (DHP). Mean open times for the five levels were brief (<1 msec) in control solutions but increased in the presence of BAY K 8644. In 100mm Ba2+ and BAY K 8644, the five predominant slope conductances were 8–9, 12–13, 16–18, 23–24, and 28 pS. The present study is the first report of multiple levels of the DHP-sensitive Ca2+ channel occurring with high frequency in native membranes. The range of conductance levels that we observed encompasses the range of conductances found for two other different types of Ca2+ channels and indicates that unit conductance should be used with caution as a distinguishing characteristic for identification of different channel types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, N., Kostyuk, P.G., Osipchuk, Y.V. 1989. Dihydropyridine-sensitive low-threshold calcium channels in isolated rat hypothalamic neurones.J. Physiol. (London) 412:181–195

    Google Scholar 

  • Armstrong, D., Eckert, R. 1987. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization.Proc. Natl. Acad. Sci. USA 84:2518–2522

    Google Scholar 

  • Belles, B., Malecot, C.O., Hescheler, J., Trautwein, W. 1988. “Rundown” of the Ca current during long whole-cell recordings in guinea pig heart cells: Role of phosphorylation and intracellular calcium.Pfluegers Arch. 411:353–360

    Google Scholar 

  • Cavalie, A., Ochi, R., Pelzer, D., Trautwein, W. 1983. Elementary currents through Ca2+ channels in guinea pig myocytes.Pfluegers Arch. 398:284–297

    Google Scholar 

  • Chen, C., Hess, P. 1988. A complex new gating pattern detected in L-type calcium channels from guinea-pig ventricular monocytes and mouse 3T3 fibroblasts.J. Physiol. (London) 390:80P

    Google Scholar 

  • Cohen, C.J., McCarthy, R.T. 1987. Nimodipine block of calcium channels in rat anterior pituitary cells.J. Physiol. (London) 387:195–225

    Google Scholar 

  • Erlich, B.E., Schen, C.R., Garcia, M.L., Kaczorowski, G.J. 1986. Incorporation of calcium channels from cardiac sarcolemmal membrane vesicles into planar lipid bilayers.Proc. Natl. Acad. Sci. USA 83:193–197

    Google Scholar 

  • Fox, J.A. 1987. Ion channel subconductance states.J. Membrane Biol. 97:1–8

    Google Scholar 

  • Hagiwara, S., Ohmori, H. 1983. Single calcium channel currents in rat clonal pituitary cells.J. Physiol. (London) 336:649–661

    Google Scholar 

  • Hume, J.R. 1985. Comparative interactions of organic Ca++ channel antagonists with myocardial Ca++ and K+ channels.J. Pharmacol. Exp. Ther. 234:134–140

    Google Scholar 

  • Hymel, L., Striessnig, J., Glossman, H., Schindler, H. 1988. Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers.Proc. Natl. Acad. Sci. USA 85:4290–4294

    Google Scholar 

  • Imoto, Y., Yatani, A., Reeves, J.P., Codina, J., Birnbaumer, L., Brown, A.M. 1988. α-subunit of Gs directly activates cardiac calcium channels in lipid bilayers.Am. J. Physiol. 255:H722-H728

    Google Scholar 

  • Kostyuk, P.G., Shuba, Y.M., Savchenko, A.N. 1988. Three types of calcium channels in the membrane of mouse sensory neurons.Pfluegers Arch. 411:661–669

    Google Scholar 

  • Kunze, D.L., Ritchie, A.K. 1986. Single channel calcium and barium currents in the GH3 cell line.Biophys. J. 49:176a

    Google Scholar 

  • Kunze, D.L., Ritchie, A.K. 1989. Multiple conductance states of the dihydropyridine (DHP) sensitive calcium channel in GH3 cells.Biophys. J. 55:299a

    Google Scholar 

  • Lacerda, A.E., Brown, A.M. 1989. Nonmodal gating of cardiac calcium channels as revealed by dihydropyridines.J. Gen. Physiol. 93:1243–1273

    Google Scholar 

  • Llinas, R., Yarom, Y. 1981. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances.J. Physiol. (London) 315:549–567

    Google Scholar 

  • Lux, H.D., Brown, A.M. 1984. Patch and whole cell calcium currents recorded simultaneously in snail neurons.J. Gen. Physiol. 83:727–750

    Google Scholar 

  • Ma, J., Coronado, R. 1988. Heterogeneity of conductance states in calcium channels of skeletal muscle.Biophys. J. 53:387–395

    Google Scholar 

  • Matteson, D.R., Armstrong, C.M. 1986. Properties of two types of calcium channels in clonal pituitary cells.J. Gen. Physiol. 87:161–182

    Google Scholar 

  • Meves, H., Nagy, K. 1989. Multiple conductance states of the sodium channel and of other ion channels.Biochim. Biophys. Acta 988:99–105

    Google Scholar 

  • Nowycky, M.C., Fox, A.P., Tsien, R.W. 1985a. Long-opening mode of gating of neuronal calcium channels and its promotion by the dihydropyridine calcium agonist Bay K 8644.Proc. Natl. Acad. Sci. USA 82:2178–2182

    Google Scholar 

  • Nowycky, M.C., Fox, A.P., Tsien, R.W. 1985b. Three types of neuronal calcium channel with different calcium agonist sensitivity.Nature (London) 316:440–443

    Google Scholar 

  • Patlak, J.B. 1988. Sodium channel subconductance levels measured with a new variance-mean analysis.J. Gen. Physiol. 92:413–430

    Google Scholar 

  • Rane, S.G., Dunlap, K. 1986. Kinase C activator 1,2-oleoylacetylglycerol attenuates voltage-dependent calcium current in sensory neurons.Proc. Natl. Acad. Sci. USA 83:184–188

    Google Scholar 

  • Reuter, H., Stevens, C.R., Tsien, R.W., Yellen, G. 1982. Properties of single calcium channels in cardiac cell culture.Nature (London) 297:501–504

    Google Scholar 

  • Rorsman, P., Ashcroft, R.M., Trube, G. 1988. Single Ca channel currents in mouse pancreatic β.Pfluegers Arch. 412:597–603

    Google Scholar 

  • Smith, J.S., McKenna, E.J., Ma, J., Vilven, J., Vaghy, P.L., Schwartz, A., Coronado, R. 1987. Calcium channel activity in a purified dihydropyridine-receptor preparation of skeletal muscle.Biochemistry 26:7182–7188

    Google Scholar 

  • Talvenheimo, J.A., Worley, J.F., III, Nelson, M.T. 1987. Heterogeneity of calcium channels from a purified dihydropyridine receptor preparation.Biophys. J. 52:891–899

    Google Scholar 

  • Trautwein, W., Cavalie, A., Flockerzi, V., Hofmann, F., Pelzer, D. 1987. Modulation of calcium channel function by phosphorylation in guinea pig ventricular cells and phospholipid bilayer membranes.Circ. Res. (Suppl. I)61:I17-I23

    Google Scholar 

  • Tsien, R.W., Lipscombe, D., Madison, D.V., Bley, K.R., Fox, A.P. 1988. Multiple types of neuronal calcium channels and their selective modulation.Trends Neurosci 11:431–438

    Google Scholar 

  • Velasco, J.M., Petersen, J.U.H., Petersen, O.H. 1988. Single-channel Ba2+ currents in insulin-secreting cells are activated by glyceraldehyde stimulation.FEBS Lett. 231:366–370

    Google Scholar 

  • Yatani, A., Brown, A.M. 1985. The calcium channel blocker nitrendipine blocks sodium channels in neonatal rat cardiac myocytes.Circ. Res. 56:868–875

    Google Scholar 

  • Yatani, A., Imoto, Y., Codina, J., Hamilton, S.L., Brown, A.M., Birnbaumer, L. 1988. The stimulatory G protein of adenylyl cyclase also stimulates skeletal muscle T-tubule Ca2+ channels.J. Biol. Chem. 263:9885–9895

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunze, D.L., Ritchie, A.K. Multiple conductance levels of the dihydropyridine-sensitive calcium channel in GH3 cells. J. Membrain Biol. 118, 171–178 (1990). https://doi.org/10.1007/BF01868474

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868474

Key Words

Navigation