Skip to main content
Log in

Internal and external application of photodynamic sensitizers on squid giant axons

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Squid giant axons were photosensitized by dyes applied internally or externally in air saturated solutions and photochemically modified by visible light. For most dyes the modifications included an irreversible block of sodium channels, a destruction of inactivation in some of the unblocked channels, and a slowing of inactivation. Internal application was up to 100-fold more effective in blocking sodium channels than external application, suggesting a site of block nearer the internal surface. Rose Bengal sensitized channel block and destruction of inactivation when applied internally, but sensitized only channel block when applied externally. In contrast, externally applied Eosin Y sensitized a clear slowing of inactivation plus channel block. Beta-carotene, an effective agent for quenching photochemically generated excited singlet oxygen, inhibited most of the modification sensitized by internally applied Methylene blue but not by Rose Bengal or Merocyanine 540.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, S.M., Krinsky, N.I. 1974. Carotenoid protection of both type I and type II photosensitized oxidations.Abstr. Annu. Meet. Am. Soc. Photobiol. 2: 71

    Google Scholar 

  • Armstrong, C.M., Binstock, L. 1965. Anomalous rectification in the squid axon injected with tetraethylammonium chloride.J. Gen. Physiol. 48: 872

    Google Scholar 

  • Arvanitaki, A., Chalazonitis, N. 1961. Excitatory and inhibitory processes initiated by light and infrared radiations in single identifiable nerve cells (giant ganglion cells ofAplysia) In: Nervous Inhibition. E. Florey, editor. p. 194. Pergamon Press, New York

    Google Scholar 

  • Arvanitaki, A., Romey, G., Chalazonitis, N. 1968. Photopotentiel primaire et effets secondaires par photoactivation de la neuromembrane à haute résolution spatiale et temporelle (émission Laser) (neurones d'Helix etd'Aplysia).Compt. Rend. Soc. Biol. 162: 153

    Google Scholar 

  • Baker, P.F., Hodgkin, A.L., Shaw, T.I. 1961. Replacement of the protoplasm of a giant nerve fiber with artificial solutions.Nature (London) 190: 885

    Google Scholar 

  • Begenisich, T. 1975. Magnitude and location of surface charges onMyxicola giant axons.J. Gen. Physiol. 66: 47

    PubMed  Google Scholar 

  • Binstock, L., Adelman, Jr., W.J., Senft, J.P., Lecar, H. 1975. Determination of the resistance in series with the membranes of giant axons.J. Membrane Biol. 21: 25

    Google Scholar 

  • Blossey, E.C., Neckers, D.C., Thayer, A.L., Schaap, A.P. 1973. Polymer-based sensitizers for photooxidations.J. Am. Chem. Soc. 95: 17

    Google Scholar 

  • Cohen, L.B. 1973. Changes in neuron structure during action potential propagation and synaptic transmission.Physiol. Rev. 53: 373

    PubMed  Google Scholar 

  • Fahrenholtz, S.R., Doleiden, F.H., Trozzolo, A.M., Lamola, A.A. 1974. On the quenching of singlet oxygen by α-tocopherol.Photochem. Photobiol. 20: 505

    PubMed  Google Scholar 

  • Foote, C.S., Chang, Y.C., Denny, R.W. 1970. Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection.J. Am. Chem. Soc. 92: 5216

    PubMed  Google Scholar 

  • Goldman, L., Schauf, C.L. 1972. Inactivation of the sodium current inMyxicola giant axons. Evidence for coupling to the activation process.J. Gen. Physiol. 59: 659

    PubMed  Google Scholar 

  • Hille, B. 1972. The permeability of the sodium channel to metal cations in myelinated nerve.J. Gen. Physiol. 59: 637

    PubMed  Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952a. The dual effect of membrane potential on sodium conductance in the giant axon ofLoligo.J. Physiol. (London) 116: 497

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952b. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117: 500

    Google Scholar 

  • Jakobsson, E. 1976. Fully coupled transient excited state model for the sodium channel.Biophys. J. 16: 78a

    Google Scholar 

  • Jori, G. 1975. Photosensitized reactions of amino acids and proteins.Photochem. Photobiol. 21: 463

    Google Scholar 

  • Kepka, A.G., Grossweiner, L.I. 1973. Photodynamic inactivation of lysozyme by eosin.Photochem. Photobiol. 18: 49

    PubMed  Google Scholar 

  • Lillie, R.S., Hinrichs, M.A., Kosman, A.J. 1935. The influence of neutral salts on the photodynamic stimulation of muscle.J. Cell Comp. Physiol. 6: 487

    Google Scholar 

  • Lippay, F. 1929. Über Wirkungen des Lichtes auf den quergesteiften Muskel I. Versuche mit sichtbarem Licht an sensibilisierten Kaltblütermuskeln.Pflugers Arch. 222: 616

    Google Scholar 

  • Matheson, I.B.C., Curry, N.U., Lee, J. 1974. Reaction rate of bilirubin with singlet oxygen (1 Δg) and its strong enhancement by added base.J. Am. Chem. Soc. 96: 11

    Google Scholar 

  • Moore, J.W., Cox, E.B. 1976. A kinetic model for the sodium conductance system in squid axon.Biophys. J. 16: 171

    PubMed  Google Scholar 

  • Narahashi, T., Moore, J.W., Scott, W.R. 1964. Tetrodotoxin blockage of sodium conductance increase in lobster giant axons.J. Gen. Physiol. 47: 965

    PubMed  Google Scholar 

  • Nilsson, R., Merkel, R.B., Kearns, D.R. 1972. Unambiguous evidence for the participation of singlet oxygen (1 Δ) in photodynamic oxidation of amino acids.Photochem. Photobiol. 16: 117

    PubMed  Google Scholar 

  • Oxford, G.S., Pooler, J.P. 1975. Selective modification of sodium channel gating in lobster axons by 2,4,6-trinitrophenol. Evidence for two inactivation mechanisms.J. Gen. Physiol. 66: 765

    PubMed  Google Scholar 

  • Pooler, J.P. 1968. Light-induced changes in dye-treated lobster giant axons.Biophys. J. 8: 1009

    PubMed  Google Scholar 

  • Pooler, J.P. 1972. Photodynamic alteration of sodium currents in lobster axons.J. Gen. Physiol. 60: 367

    PubMed  Google Scholar 

  • Pooler, J., Oxford, G.S. 1973. Photodynamic alteration of lobster giant axons in calcium-free and calcium-rich media.J. Membrane Biol. 12: 339

    Google Scholar 

  • Salzberg, B.M., Cohen, L.B., Ross, W.N., Waggoner, A.S., Wang, C.H. 1975. New and more sensitive molecular probes of membrane potential: Simultaneous optical recordings from several cells in the central nervous system of the leech.Biol. Bull. (Woods Hole, Mass.) 149: 445

    Google Scholar 

  • Salzberg, B.M., Davila, H.V., Cohen, L.B. 1973. Optical recording of impulses in individual neurones of an invertebrate central nervous system.Nature (London) 246: 508

    Google Scholar 

  • Spikes, J.D., MacNight, M.L. 1970. Dye-sensitized photooxidation of proteins.Ann. N.Y. Acad. Sci. 171: 149

    Google Scholar 

  • Spikes, J.D., Straight, R. 1967. Sensitized photochemical processes in biological systems.Annu. Rev. Phys. Chem. 18: 409

    Google Scholar 

  • Tasaki, I., Carbone, E., Sisco, K., Singer, I. 1973. Spectral analyses of extrinsic fluorescence of the nerve membrane labeled with aminonaphthalene derivatives.Biochim. Biophys. Acta 323: 220

    PubMed  Google Scholar 

  • Tasaki, I., Hallett, M., Carbone, E. 1973. Further studies of nerve membranes labeled with fluorescent probes.J. Membrane Biol. 11: 353

    Google Scholar 

  • Tasaki, I., Watanabe, A., Hallett, M. 1972. Fluorescence of squid axon membrane labelled with hydrophobic probes.J. Membrane Biol. 8: 109

    Google Scholar 

  • Wang, C.M., Narahashi, T., Scuka, M. 1972. Mechanism of negative temperature coefficient of nerve blocking action of allethrin.J. Pharm. Exp. Ther. 182: 442

    Google Scholar 

  • Wu, C.H., Narahashi, T. 1973. Mechanism of action of propranolol on squid axon membranes.J. Pharm. Exp. Ther. 184: 155

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oxford, G.S., Pooler, J.P. & Narahashi, T. Internal and external application of photodynamic sensitizers on squid giant axons. J. Membrain Biol. 36, 159–173 (1977). https://doi.org/10.1007/BF01868149

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868149

Keywords

Navigation