Skip to main content
Log in

Striated muscle tropomyosin-enriched microfilaments of developing muscles of chicken embryos

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

The striated muscle tropomyosin-enriched microfilaments were isolated from developing musclesin ovo by the previously described method with a monoclonal antibody against striated muscle isoforms of tropomyosin (Lin & Lin, 1986). Two-dimensional gel analysis of the isolated microfilaments from developing heart, thigh and breast muscles revealed the coexistence of non-muscle isoforms of tropomyosin and actin throughout all stages of embryogenesis. A small but significant amount of skeletal muscle isoforms (α, β) of tropomyosins and their phosphorylated forms was detected in the microfilaments isolated from hearts of 6–15-day-old embryos. These skeletal isoforms of tropomyosins disappeared after this stage of embryogenesis. In addition, we also detected both embryonic and adult isoforms of troponin T in early developing hearts. In developing thigh and breast muscles, the presence of non-muscle tropomyosin isoforms 2, 3a and 3b in the isolated microfilaments was apparent. The contents of tropomyosin isoform 2 were decreased with development and this non-muscle isoform completely disappeared at the 15th day of embryogenesis. On the other hand, the non-muscle tropomyosin isoforms 3a and 3b were present throughout all stages of development. Double-label immunofluorescence microscopy with monoclonal CH1 (anti-striated muscle isoforms of tropomyosin) and CGβ6 (anti-non-muscle isoforms of tropomyosin) on the isolated, glycerinated skeletal and cardiac muscle cells of 10-day-old or 13-day-old embryos confirmed the colocalization of muscle and non-muscle isoforms of tropomyosins within the same cells. These results suggest that different isoforms of actin and tropomyosin can assemble into a class of microfilaments (i.e. striated muscle tropomyosin-enriched microfilaments)in ovo, which may transform into the thin filaments of mature muscle cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antin, P. B., Tokunaka, S., Nachmias, V. T. &Holtzer, H. (1986) Role of stress fiber-like structures in assembling nascent myofibrils in myoblasts recovering from exposure to ethyl methanesulfonate.J. Cell Biol. 102, 1464–79.

    Article  PubMed  Google Scholar 

  • Blattler, D. P., Garner, F., Van Slyke, K. &Bradley, A. (1972) Quantitative electrophoresis in polyacrylamide gels of 2–40%.J. Chromatogr. 64, 147–55.

    Article  Google Scholar 

  • Brisson, J. R., Grolosinska, K., Smillie, L. B. &Sykes, B. D. (1986) Interaction of tropomyosin and troponin T: A proton nuclear magnetic resonance study.Biochemistry 25, 4548–55.

    Article  PubMed  Google Scholar 

  • Caplan, A. I., Fiszman, M. Y. &Eppenberger, H. M. (1983) Molecular and cell isoforms during development.Science 221, 921–7.

    PubMed  Google Scholar 

  • Carmon, Y., Newman, S. &Yaffe, D. (1978) Synthesis of tropomyosin in myogenic cultures and in RNA-directed cell free system: qualitative changes in the polypeptides.Cell 14, 393–401.

    Article  PubMed  Google Scholar 

  • Cooper, T. A. &Ordahl, C. P. (1985) A single cardiac troponin T gene generates embryonic and adult isoforms via developmentally regulated alternate splicing.J. Biol. Chem. 260, 11140–8.

    PubMed  Google Scholar 

  • Devlin, R. B. &Emerson, C. P. Jr. (1978) Coordinate regulation of contractile protein synthesis during myoblast differentiation.Cell 13, 599–611.

    Article  PubMed  Google Scholar 

  • Dlugosz, A. A., Antin, P. B., Nachmias, V. T. &Holtzer, H. (1984) The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes.J. Cell Biol. 99, 2268–78.

    Article  PubMed  Google Scholar 

  • Fischman, D. A. (1970) The synthesis and assembly of myofibrils in embryonic muscles.Curr. Top. Dev. Biol. 5, 235–80.

    PubMed  Google Scholar 

  • Fischman, D. A. (1971) The fine structure of muscle differentiation in monolayer culture. InResearch in Muscle Development and the Muscle Spindle (edited byBanker, B., Pryzybylski, R., fnVan Der Meulen, J. &Victor, M.). pp 163–75. New York: Elsevier.

    Google Scholar 

  • Garrels, J. I. &Gibson, W. (1978) Identification and characterization of multiple forms of actin.Cell 9, 793–805.

    Article  Google Scholar 

  • Giloh, H. &Sedat, J. W. (1982) Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugated by n-propyl gallate.Science 217, 1252–5.

    PubMed  Google Scholar 

  • Greaser, M. L., Handel, S. E., Wang, S-M., Schultz, E., Bulinski, J. C., Lin, J. J.-C &Lessard, J. L. (1989) Assembly of titin, myosin, actin and tropomyosin into myofibrils in cultured chick cardiomyocytes. InCellular and Molecular Biology of Muscle Development (edited byKedes, L. H. &Stockdale, F. E.), pp. 247–57. New York: Alan R. Liss.

    Google Scholar 

  • Greene, L. E. &Eisenberg, E. (1980) Cooperative binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex.Proc. Natl. Acad. Sci. USA 77, 2616–20.

    PubMed  Google Scholar 

  • Hayashi, J., Ishimoda, T. &Hirabayashi, T. (1979) On the heterogeneity and organ specificity of chicken tropomyosins.J. Biochem. 81, 1487–95.

    Google Scholar 

  • Heeley, D. H., Watson, M. H., Mak A. S., Dubord, P. &Smillie, L. B. (1989) Effect of phosphorylation on the interaction and functional properties of rabbit striated muscle α-tropomyosin.J. Biol. Chem. 264, 2424–30.

    PubMed  Google Scholar 

  • Jin, J.-P &Lin, J. J.-C (1988) Rapid purification of mammalian cardiac troponin T and its isoform switching in rat hearts during development.J. Biol. Chem. 263, 7309–15.

    PubMed  Google Scholar 

  • Jin, J.-P., Lin, J. L.-C &Lin, J. J.-C (1989) Troponin T isoform switching during heart development.Ann. N.Y. Acad. Sci. (in press).

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature (Lond.) 227, 680–5.

    Article  Google Scholar 

  • Lewis, W. G. &Smillie, L. B. (1980) The amino acid sequence of rabbit cardiac tropomyosin.J. Biol. Chem. 255, 6854–9.

    PubMed  Google Scholar 

  • Lin, J. J.-C., Chou, C. S. &Lin, J. L.-C. (1985a) Monoclonal antibodies against chicken tropomyosin isoforms: production, characterization and application.Hybridoma 4, 223–42.

    PubMed  Google Scholar 

  • Lin, J. J.-C., Hegman, T. E., &Lin, J. L.-C (1988) Differential localization of tropomyosin isoforms in cultured nonmuscle cells.dJ. Cell Biol. 107, 563–72.

    Article  Google Scholar 

  • Lin, J. J.-C., Helfman, D. M., Hughes, S. H. &Chou, C.-S. (1985b) Tropomyosin isoforms in chicken embryo fibroblasts: Purification, characterization, and changes in Rous sarcoma virus-transformed cells.J. Cell Biol 100, 692–703.

    Article  PubMed  Google Scholar 

  • Lin, J. J.-C. &Lin, J. L.-C (1986) Assembly of different isoforms of actin and tropomyosin into the skeletal tropomyosin-enriched microfilaments during differentiation of muscle cellsin vitro.J. Cell Biol. 103, 2173–83.

    Article  PubMed  Google Scholar 

  • Lindquester, G. J., Flach, J. E., Fleenor, D. E., Hickman, K. H. &Devlin, R. B. (1989) Avain tropomyosin gene expression.Nucl. Acid. Res. 17, 2099–118.

    Google Scholar 

  • Mak, A. S. &Smillie, L. B., (1981) Structural interpretation of the two-site binding of troponin on the muscle thin filament.J. Mol. Biol. 149, 541–50.

    Article  PubMed  Google Scholar 

  • Mak, A. S., Smillie, L. B. &Barany, M. (1978) Specific phosphorylation at serine-283 ofα tropomyosin from frog skeletal and rabbit skeletal and cardiac muscle.Proc. Natl. Acad. Sci. USA 75, 3588–92.

    PubMed  Google Scholar 

  • Matsumura, F., Yamashiro-Matsumara, S. &Lin, J. J.-C (1983) Isolation and characterization of tropomyosin-containing microfilaments from cultured cells.J. Biol. Chem. 258, 6636–44.

    PubMed  Google Scholar 

  • Merril, C. R., Goldman, D., Sedman, S. A. &Ebert, M. H. (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins.Science 211, 1437–8.

    PubMed  Google Scholar 

  • Mittal, B., Sanger, J. M. &Sanger, J. W. (1987) Visualization of myosin in living cells.J. Cell Biol. 105, 1753–60.

    Article  PubMed  Google Scholar 

  • Montarras, D., Fiszman, M. Y., &Gros, F. (1981) Characterization of the tropomyosin present in various chick embryo muscle types and in muscle cells differentiatedin vitro.J. Biol Chem. 256, 4081–6.

    PubMed  Google Scholar 

  • Montarras, D., Fiszman, M. Y. &Gras, F. (1982) Changes in tropomyosin during development of chick embryonic skeletal musclesin vivo and during differentiation of chick muscle cellsin vitro.J. Biol. Chem. 257, 545–8.

    PubMed  Google Scholar 

  • Montgomery, K &Mak, A. S. (1984)In vitro phosphorylation of tropomyosin by a kinase from chicken embryo.J. Biol. Chem. 259, 5555–60.

    PubMed  Google Scholar 

  • O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins.J. Biol. Chem. 250, 4007–21.

    PubMed  Google Scholar 

  • Otey, C. A., Kalnoski, M. H. &Bulinski, J. C. (1988) Immunolocalization of muscle and nonmuscle isoforms of actin in myogenic cells and adult skeletal muscle.Cell Motil. Cytoskel. 9, 337–48.

    Article  Google Scholar 

  • Patterson, B. &Strohman, R. C. (1972) Myosin synthesis in cultures of differentiating chick embryo skeletal muscle.Dev. Biol. 29, 113–8.

    Article  PubMed  Google Scholar 

  • Peng, H. B., Wolosewick, J. J. &Cheng, P.-C (1981) The development of myobrils in cultured muscle cells: A whole mount and thin-section electron microscopic study.Dev. Biol 88, 121–6.

    Article  PubMed  Google Scholar 

  • Sanger, J. M., Mittal, B., Pochapin, M. B. &Sanger, J. W. (1986) Myofibrillogenesis in living cells microinjected with fluorescently labeledα-actinin.J. Cell Biol. 102, 2053–66.

    Article  PubMed  Google Scholar 

  • Shimada, Y., Fishman, D. A. &Moscona, A. A. (1967) The fine structure of embryonic chick skeletal muscle cells differentiationin vitro.J. Cell Biol. 35, 445–3.

    Article  PubMed  Google Scholar 

  • Shimada, Y (1971) Electron microscope observations on the fusion of chick myoblastsin vitro.J. Cell Biol. 48, 128–42.

    Article  PubMed  Google Scholar 

  • Wang, S.-M., Greaser, M. L., Schultz, E., Bulinski, J. C., Lin, J. J.-C &Lessard, J. L. (1988) Studies on cardiac myofibrillogenesis with antibodies to titin, tropomyosin and myosin.J. Cell Biol. 107, 1075–83.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, SM., Wang, SH., Lin, J.LC. et al. Striated muscle tropomyosin-enriched microfilaments of developing muscles of chicken embryos. J Muscle Res Cell Motil 11, 191–202 (1990). https://doi.org/10.1007/BF01843573

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01843573

Keywords

Navigation