Skip to main content
Log in

Paleogeography as a climatic forcing factor

  • Aufsätze
  • Published:
Geologische Rundschau Aims and scope Submit manuscript

Zusammenfassung

Die Ursache des warmen, ausgewogen eisfreien Klimas, das in phanerozoischer Erdgeschichte dominiert, und die Ursache des Übergangs zu glazialen Epochen sind fundamentale Probleme in der Paläoklimatologie. Aufgrund mehrerer Kriterien wird Paläogeographie als einer der wahrscheinlichsten Mechanismen für Klimaänderungen auf dieser Zeitskala angesehen. Paläogeographie verändert das Klima durch Änderungen atmosphärischer und ozeanischer Zirkulationssysteme, durch Modifizierung der weltweiten Albedoverteilung auf Grund unterschiedlicher Albedo über verschiedenen Oberflächen (Ozean, Land, Schnee) sowie durch die starke Abhängigkeit der einfallenden Sonneneinstrahlung von der geographischen Breite.

Die Benutzung einfacher und — beim heutigen Stand der Theorie — fortgeschrittener Modelle erlaubt eine Überprüfung der Bedeutung dieser zweiten Hypothese für klimatische Änderungen. Es wird gefolgert, daß Paläogeographie, durch die direkte Modifizierung planetarischer Albedo, den globalen Kühlungstrend im Tertiär vorzeichenrichtig andeutet und größenordnungsmäßig den Unterschied zwischen dem warmen, ausgewogenen mesozoischen Klima und dem derzeitigen glazialen Klima erklärt.

Abstract

The cause of warm, equable ice free climates which dominate Phanerozoic earth history and the cause of the transition to glacial epochs are fundamental problems in paleoclimatology. Based on several criteria, paleogeography is one of the most likely mechanisms of climatic change on this time scale. Paleogeography modifies climate by inducing changes in atmospheric and oceanic circulation patterns, and by modifying the global albedo because of the contrasts in the albedo of different surfaces (e. g. ocean, land and snow) and because incoming solar radiation is a strong function of latitude. Using both simple and state-of-the-art planetary albedo models, the importance of this second hypothesis is tested as a mechanism of climatic change. It is concluded that paleogeography, by directly altering the planetary albedo, operates in the correct sense to explain the Tertiary global cooling and close to the correct order of magnitude to explain the contrast between warm, equable Mesozoic climates and the present glacial climates.

Résumé

La cause de l'existence de climates chauds, dépourvus de fluctuations extrêmes et de glaciations, qui ont dominé l'histoire de la Terre durant le Phanérozoique et la cause de la transition à des périodes glaciaires posent des problèmes fondamentaux à la paléoclimatologie. Basée sur plusieurs évidences, la paléogéographie est un des méchanismes les plus probables qui soit à l'origine des changements climatiques considérés sur cette échelle de temps. La paléogéographie introduit des changements de climat en induisant des perturbations dans les modèles de circulation atmosphérique et océanique et en modifiant l'albedo global à cause des contrastes dans l'albedo des différentes surfaces (ex: océan, continent et neige), et parce que la radiation solaire reçue est en étroite relation avec la latitude. A partir de deux modèles, l'un simple et le second le plus éllaboré à l'heure actuelle, l'importance de la seconde hypothèse est testée comme un méchanisme de changement climatique. On arrive à la conclusion que la paléogéographie, en modifiant d'emblée l'albedo à l'échelle du globe, joue dans le bon sens pour expliquer le refroidissement général durant le Tertiaire, et est très voisin de l'ordre de grandeur correct pour expliquer l'opposition entre les climats chauds, dépourvus d'extrêmes fluctuations durant le Mésozoique, et les climats glaciaires d'aujourd'hui.

Краткое содержание

Причины теплого, своб одного от льда климат а, господствовавшего в фанерозойский период истории Земли, как и причины переход я к эпохе оледенения являются фундамента льными проблемами па леоклимата. Многие критерии указывают на то, что из менение палеогеогра фии является наиболее ве роятным механизмом изменени я климата в этот отрез ок времени. Палеогеография изменяет климат, изме няя системы циркуляц ии атмосферы и воды в оке анах, и широкое распределе ние альбедо на основа нии различий альбедо над различными поверхностями, как-то океан, суша, снег, и такж е в результате зависимости интенси вности солнечного ос вещения от географической широ ты. Применение простой и — при сегодн яшнем состоянии теор ии — прогрессивной модели разрешает про верить значение этой второй гипотезы изменения климата во времени. Де лают вывод, что палеог реграфия, которая непосредств енно изменяет альбедо пла неты, правильно указа ла на глобальную тенденци ю к охлаждению в третич ном периоде и объясни ла соответственно величинам различие т ежду теплым, умеренны м мезозойским климато м и глациальным климато м сегодняшнего дня.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Barron, E. J., Sloan, J. L. II, Harrison, C. G. A.: Potential significance of land-sea distribution and surface albedo variations as a climatic forcing factor, 180 m. y. to the present. Palaeogeo. Palaeoclim. Palaeoecol.30, 17–40, 1980.

    Google Scholar 

  • Begelman, M., Rees, M.: Can cosmic clouds cause climatic catastrophes. Nature261, 298–299, 1976.

    Google Scholar 

  • Berger, A.: Obliquity and precession for the last 5 000 000 years. Astron. Astrophys.51, 127–135, 1976.

    Google Scholar 

  • Budyko, M. I.: Climatic Change. 266 p., American Geophysical Union: Washington, 1977.

    Google Scholar 

  • Chylek, P., Coakley, J.: Aerosols and climate. Science183, 75–77, 1974.

    Google Scholar 

  • Dennison, B., Mansfield, V.: Glaciations and dense interstellar clouds. Nature,261, 32–34, 1976.

    Google Scholar 

  • Donn, W. L., Shaw, D. M.: Model of climate evolution based on continental drift and polar wandering. Geol. Soc. Amer. Bull.88, 390–396, 1977.

    Google Scholar 

  • Frakes, L., Kemp, E.: Influence of continental positions on early Tertiary climates. Nature240, 97–100, 1972.

    Google Scholar 

  • Hein, J., Scholl, D., Miller, J.: Episodes of Aleutian ridge explosive volcanism. Science199, 137–141, 1978.

    Google Scholar 

  • Hays, J., Pitman, W.: Lithospheric plate motion, sea level changes, and climatic and ecological consequences. Nature246, 18–22, 1973.

    Google Scholar 

  • Hunt, B.: A simulation of the possible consequences of a volcanic eruption on the general circulation of the atmosphere. Mon. Wea. Rev.105, 247–260, 1977.

    Google Scholar 

  • Kennett, J., Thunneix, R.: Global increase in Quaternary explosive volcanism. Science187, 497–503, 1975.

    Google Scholar 

  • Manabe, S., Wetherald, R.: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci.24, 241–259, 1967.

    Google Scholar 

  • —: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci.32, 3–15, 1975.

    Google Scholar 

  • McCrea, W.: Ice ages and the galaxy. Nature255, 607–609, 1975.

    Google Scholar 

  • Ninkovich, D., Donn, W.: Explosive Cenozoic volcanism and climatic implications. Science194, 899–906, 1976.

    Google Scholar 

  • Pitman, W.: Relationship between eustasy and stratigraphic sequences of passive margins, Geol. Soc. Amer. Bull.89, 1389–1403, 1978.

    Google Scholar 

  • Ramanathan, V., Lian, M., Cess, R.: Increased atmospheric CO2: zonal and seasonal estimates of the effect on the radiation energy balance and surface temperature. J. Geophys. Res.84, 4949–4958, 1979.

    Google Scholar 

  • Rasool, S., Schneider, S.: Atmospheric carbon dioxide and aerosols: effects of large increases on global climate. Science173, 138–141, 1971.

    Google Scholar 

  • Savin, S. M.: The history of the earth's surface temperature during the past 100 million years. Ann. Rev. Earth Planet. Sci.5, 319–355, 1977.

    Google Scholar 

  • Schneider, S., Mass, C.: Volcanic dust, sunspots, and temperature trends. Science190, 741–746, 1975.

    Google Scholar 

  • Schneider, S., Washington, W., Chervin, R.: Cloudiness as a climatic feedback mechanism: effects on cloud amounts of prescribed global and regional surface temperature changes in the NCAR GCM. J. Atmos. Sci.35, 2207–2221, 1978.

    Google Scholar 

  • Sellers, A., Meadows, A. J.: Long term variations in albedo and surface temperature of the earth. Nature254, 44, 1975.

    Google Scholar 

  • Sellers, W. D.: A global climatic model based on the energy balance of the earthatmosphere system. J. Appl. Meteorol.8, 392–400, 1969.

    Google Scholar 

  • —: Physical Climatology. 272 p., University of Chicago Press: Chicago, 1965.

    Google Scholar 

  • Tarling, D.: The geological-geophysical framework of ice ages — in: Gribben, J. ed.: Climatic Change - Cambridge University Press: Cambridge, p. 3–24, 1978.

    Google Scholar 

  • Thompson, S. L.,Barron, E. J.: Comparison of Cretaceous and present earth albedos: Implications for the causes of paleoclimates. J. Geology (in press), 1980.

  • Vail, P.,Mitchum, R.,Thompson, S.: Seismic stratigraphy and global changes of sea level, Part 4: global cycles of relative changes of sea level. - In: Payton, C., ed.: Seismic Stratigraphy — Applications to Hydrocarbon Exploration. - Amer. Assoc. Petrol. Geol. Mem.26, p. 83–97, 1977.

  • van Woerkom, A.: The astronomical theory of climate changes. - in: Shapley, H. ed.: Climatic Change. - Harvard University Press: Cambridge, p. 147–157, 1953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barron, E.J. Paleogeography as a climatic forcing factor. Geol Rundsch 70, 737–747 (1981). https://doi.org/10.1007/BF01822147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01822147

Keywords

Navigation