Skip to main content
Log in

Novel prebiotic systems: Nucleotide oligomerization in surfactant entrapped water pools

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

Oligomerization of 5′-TMP in water pools entrapped by dodecyl-ammonium chloride surfactant aggregates in benzene: hexane in the presence of dicyanodiimide at temperatures ranging from 21°–72° resulted in the formation of linear and cyclic oligonucleotides containing up to pentamers. Effects of temperature, time and surfactants have been examined. Rate constants for the formation of oligomers have been determined at five different temperatures. These data afforded values of ΔH = 11.8 ± 1.9 Kcal mole−1, ΔS=−53α 6 e.u. and ΔG = 27.4α 4.0 Kcal mole−1. Prebiotic significance of these results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Calvin, M. (1969). Chemical evolution. New York: Oxford University Press

    Google Scholar 

  • Cantor, C. R., Fairclough, R. H., Newmark, R. A. (1969). Oligonucleotide interactions. II. Differences in base stacking in linear and cyclic deoxythymidine oligonucleotides. Biochemistry,9, 3610–3617

    Google Scholar 

  • Dutta, S. K., Jones, A. A., Stacey, M. (1953). The separation of deoxypentosenucleic acids and pentosenucleic acids. Biochim. Biophys. Acta10, 613–622

    Google Scholar 

  • Eigen, M. (1971). Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften58, 10, 465–523

    Google Scholar 

  • Fendler, J.H. (1976). Interactions and reactions in reversed micellar systems. Accounts Chem. Res.9, 153–161

    Google Scholar 

  • Fendler, J. H., Fendler, E. J. (1975). Catalysis in micellar and macromolecular systems. New York: Academic Press

    Google Scholar 

  • Fendler, J. H., Fendler, E. J., Medary, R. T., Woods, V. A. (1972). Catalysis by reversed micelles in nonpolar solvents. J. Am. Chem. Soc.94, 7288–7295

    Google Scholar 

  • Fendler, J. H., Liu, L. J. (1975). Charge-transfer interactions in nonpolar solvents in the presence of surfactants aggregates. J. Am. Chem. Soc.97, 999–1003

    Google Scholar 

  • Fendler, J. H., Nome, F., Nagyvary, J. (1975). Compartmentalization of amino acids in surfactant aggregates. J. Mol. Evol.6, 215–232

    Google Scholar 

  • Gitler, C., Ochoa-Solano, A. (1968). Nonpolar contributions to the rate of nucleophilic displacement of p-nitrophenyl esters in micelles. J. Am. Chem. Soc.90, 5004–5009

    Google Scholar 

  • Herrera, A. L. (1942). A new theory of the origin and nature of life. Science96, 14–15

    Google Scholar 

  • Ibanez, J. D., Kimball, A. P., Oro, J. (1971a). Condensation of mononucleotides by imidazole. J. Mol. Evol.1, 112–114

    Google Scholar 

  • Ibanez, J. D., Kimball, E. P., Oro, J. (1971b). Possible prebiotic condensation of mononucleotides by cyanamide. Science173, 444–446

    Google Scholar 

  • Izatt, R. M., Christensen, J. J., Rytting, J. H. (1971). Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem. Rev.71, 439–482

    Google Scholar 

  • Khorana, J. G., Vizsolyi, J. P. (1961). Studies on polynucleotides. VIII. Experiments on the polymerization of mononucleotides. Improved preparation on separation of linear thymidine polynucleotides. Synthesis of corresponding members terminated in deoxycytidine residues. J. Am. Chem. Soc.83, 675–685

    Google Scholar 

  • Khorana, J. G., Vizsolyi, J. P., Ralph, R. K. (1962). Studies on polynucleotides. XII. Experiments on the polymerization of mononucleotides. A comparison of different polymerizing agents and a general improvement in the isolation of synthetic polynucleotides. J. Am. Chem. Soc.84, 414–418

    Google Scholar 

  • Khym, J. X., Uziel, M. (1968). The use of the cetyltrimethylammonium cation in terminal sequence analyses of ribonucleic acids. Biochemistry7, 1, 422–426

    Google Scholar 

  • Kuhn, H. (1972). Self-organization of molecular systems and evolution of the genetic apparatus. Angew. Chem. Int. Ed. England11, 9, 798–820

    Google Scholar 

  • Lasaga, A. C., Holland, H. D., Dwyer, M. J. (1971). Primordial oil slick. Science174, 53–55

    Google Scholar 

  • Nagyvary, J., Fendler, J. H. (1973). Presentation: Origin of the genetic code: A physicalchemical model of primitive codon assignments. The International Conference on the Origin of Life, Barcelona, Spain, July, 1973

  • Nagyvary, J., Fendler, J. H. (1974). Origin of the genetic code: A physical-chemical model of primitive codon assignments. Origins of Life5, 357–362

    Google Scholar 

  • Nagyvary, J., Fendler, J. H. (1976). The physical chemical basis for the genetic code. Precambrian Res. in press

  • Nagyvary, J., Harvey, J. A., Nome, F., Armstrong, D. W., Fendler, J. H. (1976). Novel prebiotic model systems: Interactions of nucleosides and nucleotides with aqueous micellar sodium dodecanoate. Precambrian Res.3, 509–516

    Google Scholar 

  • Oparin, A. I. (1957). The origin of life on the earth. New York: Academic Press

    Google Scholar 

  • Oparin, A. I. (1965). Origins of prebiological systems and of their molecular matricies, S. W. Fox, ed. New York: Academic Press

    Google Scholar 

  • Oshima, T., Iwai, T. (1968). Hydrolysis of acetic anhydride as studied by high resolution nuclear magnetic resonance. Nippon Kagaku Zasshi.89, 11, 1036–1042

    Google Scholar 

  • Ponnamperuma, C., Peterson, E. (1965). Peptide synthesis from amino acids in aqueous solution. Science147, 1572–1574

    Google Scholar 

  • Sawai, H., Orgel, L. E. (1975). Oligonucleotide synthesis catalyzed by the Zn2+ Ion. J. Am. Chem. Soc.97, 3532–3533

    Google Scholar 

  • Schwartz, A. W., Fox, S. W. (1967). Condensation of cytidylic acid in the presence of polyphosphoric acid. Biochim. Biophys. Acta134, 9–16

    Google Scholar 

  • Steinman, G., Cole, M. N. (1967). Synthesis of biologically pertinent peptides under possible primordial conditions. Proc. Natl. Acad. Sci.58, 735–742

    Google Scholar 

  • Steinman, G., Lemmon, R. M., Calvin, M. (1964). Cyanamide: A possible key compound in chemical evolution. Proc. Natl. Acad. Sci.52, 27–30

    Google Scholar 

  • Sulston, J., Lohrmann, R., Orgel, L. E., Miles, H. T. (1968). Nonenzymatic synthesis of oligoadenylates on a polyuridylic acid template. Proc. Natl. Acad. Sci.59, 726–733

    Google Scholar 

  • Sulston, J., Lohrmann, R., Orgel, L. E., Schneider-Bernloehr, H., Weimann, B. J. (1969). Nonenzymatic oligonucleotide synthesis on a polycytidylate template. J. Mol. Biol.40, 227–234

    Google Scholar 

  • Verlander, M. S., Lohrmann, R., Orgel, L. E. (1973). Catalysts for the Self-Polymerization of Adenosine Cyclic 2′,3′-Phosphate. J. Mol. Evol.2, 303–316

    Google Scholar 

  • Weimann, B. J., Lohrmann, R., Orgel, L. S., Schneider-Bernloehr, H., Sulston, J. E. (1968). Template-directed synthesis with adenosine-5′-phosphorimidazolide. Science161, 387

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong, D.W., Nome, F., Fendler, J.H. et al. Novel prebiotic systems: Nucleotide oligomerization in surfactant entrapped water pools. J Mol Evol 9, 213–223 (1977). https://doi.org/10.1007/BF01796110

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01796110

Key words

Navigation