Skip to main content
Log in

Spinal opioid systems in inflammation

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Until recently, basic science studies, both behavioural and electrophysiological, have concentrated on the antinociceptive actions of opioids primarily gauged against acute nociceptive responses. However, of more relevance to clinical situations are the actions of opioids in more persistent/prolonged pain states. This review sets out to examine the central actions of opioids against nociception of inflammatory origins. The first section deals with the response of the endogenous opioid system to the development of an inflammatory state and the second examines the ability of exogenous opioids to modulate inflammatory nociception. There are complex changes in the roles of endogenous opioids, in particular dynorphin, at the spinal level after inflammation although the physiological consequences remain unclear. With regard to exogenous opioids, the effectiveness of spinal morphine is rapidly enhanced after inflammation, likely to be due to changes in the interaction between the peptide cholecystokinin and the mu opioid receptor. The ability of inflammatory processes to alter both endogenous opioids and morphine analgesia at the spinal level illustrates the considerable degree of plasticity observed in opioid function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hughes J, Smith TW, Kosterlitz HW, Forthergill LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 1975;258:577–9.

    PubMed  Google Scholar 

  2. Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L. Dynorphin-(1–13), an extraordinarily potent opioid peptide. Proc Natl Acad Sci USA 1979;76:6666–70.

    PubMed  Google Scholar 

  3. Stein C. Interaction of immune-competent cells and nociceptors. In: Gebhart GF, Hammond DL, Jensen TS eds. Proceedings of the 7th World Congress on Pain. Progress in Pain Research and Management, vol. 2. Seattle: IASP Press, 1994:285–97.

    Google Scholar 

  4. Antonijevic I, Mousa SA, Schäfer M, Stein C. Perineurial defect and peripheral opioid analgesia in inflammation. J Neurosci 1995;15:165–72.

    PubMed  Google Scholar 

  5. Cesselin F, Montastruc JL, Gross C, Bourgoin S, Hamon M. Met-enkephalin levels and opiate receptors in the spinal cord of chronic suffering rats. Brain Res 1980;191:289–93.

    PubMed  Google Scholar 

  6. Iadarola MJ, Brady LS, Draisci G, Dubner R. Enhancement of dynorphin gene expression in spinal cord following experimental inflammation: stimulus specificity, behavioural parameters and opioid receptor binding. Pain 1988;35:313–26.

    PubMed  Google Scholar 

  7. Millan MJ, Czlonkowski A, Morris B, Stein C, Arendt R, Huber A, et al. Inflammation of the hind limb as a model of unilateral, localized pain: influence on multiple opioid systems in the spinal cord of the rat. Pain 1988;35:299–312.

    PubMed  Google Scholar 

  8. Delay-Goyet P, Kayser V, Zajac J-M, Guilbaud G, Besson J-M, Roques BP. Lack of significant changes in μ,δ opioid binding sites and neutral endopeptidase EC 3.4.24.11 in the brain and spinal cord of arthritic rats. Neuropharmacol 1989;28:1341–8.

    Google Scholar 

  9. Millan MJ, Millan MH, Czlonkowski A, Höllt V, Pilcher CWT, Herz A, et al. A model of chronic pain in the rat: response of multiple opioid systems to adjuvant-induced arthritis. J Neurosci 1986;6:899–906.

    PubMed  Google Scholar 

  10. Besse D, Weil-Fugazza J, Lombard M-C, Butler SH, Besson J-M. Monoarthritis induces complex changes in the μ-,δ-, and #x03BA;-opioid binding sites in the superficial dorsal horn of the rat spinal cord. Eur J Pharmacol 1992; 223:123–31.

    PubMed  Google Scholar 

  11. Millan MJ, Millan MH, Pilcher CWT, Czlonkowski A, Herz A, Colpaert FC. Spinal cord dynorphin may modulate nociception via a κ-opioid receptor in chronic arthritic rats. Brain Res 1985;340:156–9.

    PubMed  Google Scholar 

  12. Millan MJ, Czlonkowski A, Pilcher CWT, Almeida OFX, Millan MH, Colpaert FC, et al. A model of chronic pain in the rat: functional correlates of alterations in the activity of opioid systems. J Neurosci 1987;7:77–87.

    PubMed  Google Scholar 

  13. Iadarola MJ, Douglass J, Civelli O, Naranjo JR. Differential activation of spinal cord dynorphin and enkephalin neurones during hyperalgesia: evidence using cDNA hybridization. Brain Res 1988;455:205–12.

    PubMed  Google Scholar 

  14. Ruda MA, Iadarola MJ, Cohen LV, Young WS III. In situ hybridisation histochemistry and immunocytochemistry reveal an increase in spinal cord dynorphin biosynthesis in a rat model of peripheral inflammation and hyperalgesia. Proc Natl Acad Sci USA 1988;85:622–6.

    PubMed  Google Scholar 

  15. Nahin RL, Hylden JLK, Iadarola MJ, Dubner R. Peripheral inflammation is associated with increased dynorphin immunoreactivity in both projection and local circuit neurons in the superficial dorsal horn of the rat lumbar spinar cord. Neurosci Lett 1989;96:247–52.

    PubMed  Google Scholar 

  16. Weihe E, Millan MJ, Höllt V, Nohr D, Herz A. Induction of the gene encoding pro-dynorphin by experimentally induced arthritis enhances staining for dynorphin in the spinal cord of rats. Neuroscience 1989;31:77–95.

    PubMed  Google Scholar 

  17. Noguchi K, Kowalski K, Traub R, Solodkin A, Iadarola MJ, Ruda MA. Dynorphin expression and Fos-like immunoreactivity following inflammation induced hyperalgesia are colocalized in spinal cord neurons. Molec Brain Res 1991;10:227–33.

    PubMed  Google Scholar 

  18. Przewlocka B, Lason W, Przewlocki R. Time-dependent changes in the activity of opioid systems in the spinal cord of monoarthritic rats — a release and in situ hybridization study. Neurosci 1992;46:209–16.

    Google Scholar 

  19. Höllt V, Haarmann I, Millan MJ, Herz A. Prodynorphin gene expression is enhanced in the spinal cord of chronic arthritic rats. Neurosci Lett 1987;73:90–4.

    PubMed  Google Scholar 

  20. Draisci G, Iadarola MJ. Temporal analysis of increases in c-fos, preprodynorphin and preproenkephalin mRNAs in rat spinal cord. Mol Brain Res 1989;6:31–7.

    PubMed  Google Scholar 

  21. Draisci G, Kajander KC, Dubner R, Bennett GJ, Iadarola MJ. Up-regulation of opioid gene expression in spinal cord evoked by experimental nerve injuries and inflammation. Brain Res 1991;560:186–92.

    PubMed  Google Scholar 

  22. Noguchi K, Dubner R, Ruda MA. Preproenkephalin mRNA in spinal dorsal horn neurons is induced by peripheral inflammation and is co-localized with Fos and Fos-related proteins. Neurosci 1992;46:561–70.

    Google Scholar 

  23. Hylden JLK, Noguchi K, Ruda MA. Neonatal capsaicin treatment attenuates spinal Fos activation and dynorphin gene expression following peripheral tissue inflammation and hyperalgesia. J Neurosci 1992;12:1716–25.

    PubMed  Google Scholar 

  24. Kayser V, Guilbaud G. Dose-dependent analgesic and hyperalgesic effects of systemic naloxone in arthritic rats. Brain Res 1981;226:344–8.

    PubMed  Google Scholar 

  25. Kayser V, Guilbaud G. Differential effects of various doses of morphine and naloxone on nociceptive test thresholds in arthritic and normal rats. Pain 1990;41:353–63.

    PubMed  Google Scholar 

  26. Kayser V, Guilbaud G. Physiological relevance and time course of a tonic endogenous opioid modulation of nociceptive messages, based on the effects of naloxone in a rat model of localized hyperalgesic inflammation. Brain Res 1991;567:197–203.

    PubMed  Google Scholar 

  27. Kayser V, Benoist JM, Neil A, Gautron M, Guilbaud G. Behavioural and electrophysiological studies on the paradoxical antinociceptive effects of an extremely low dose of naloxone in an animal model of acute localized inflammation. Exp Brain Res 1988;73:402–10.

    PubMed  Google Scholar 

  28. Millan MJ, Colpaert FC. The influence of sustained opioid receptor blockade in a model of long-term, localized inflammatory pain in rats. Neurosci Lett 1990;113:50–5.

    PubMed  Google Scholar 

  29. Millan MJ, Colpaert FC. Opioid systems in the response to inflammatory pain: sustained blockade suggests role of κ- but not μ-opioid receptors in the modulation of nociception, behaviour and pathology. Neuroscience 1991;42:541–53.

    PubMed  Google Scholar 

  30. Kayser V, Guilbaud G. The analgesic effects of morphine, but not those of the enkephalinase inhibitor thirophan, are enhanced in arthritic rats. Brain Res 1983;267:131–8.

    PubMed  Google Scholar 

  31. Kayser V, Fournie-Zaluski MC, Guilbaud G, Roques BP. Potent antinociceptive effects of Kelatorphan (a highly efficient inhibitor of multiple enkephalin-degrading enzymes) systemically administered in normal and arthritic rats. Brain Res 1989;497:94–101.

    PubMed  Google Scholar 

  32. Maldonado R, Valverde O, Turcaud S, Fournié-Zaluski MC, Roques BP. Antinociceptive response induced by mixed inhibitors of enkephalin catabolism in peripheral inflammation. Pain 1994;58:77–83.

    PubMed  Google Scholar 

  33. Lombard M-C, Besson J-M. Electrophysiological evidence for a tonic activity of the spinal cord intrinsic opioid systems in a chronic pain model. Brain Res 1989;477:48–56.

    PubMed  Google Scholar 

  34. Stanfa LC, Sullivan AF, Dickenson AH. Alterations in neuronal excitability and the potency of spinal mu, delta and kappa opioids after carrageenan-induced inflammation. Pain 1992;50:345–54.

    PubMed  Google Scholar 

  35. Stiller RU, Grubb BD, Schaible H-G. Neurophysiological evidence for increased kappa opioidergic control of spinal cord neurons in rats with unilateral inflammation at the ankle. Eur J Neurosci 1993;5:1520–7.

    PubMed  Google Scholar 

  36. Stanfa LC, Dickenson AH. Electrophysiological studies on the spinal roles of endogenous opioids in carrageenan inflammation. Pain 1994;56:185–91.

    PubMed  Google Scholar 

  37. Woolf CJ. Analgesia and hyperalgesia produced in the rat by intrathecal naloxone. Brain Res 1980;189:593–7.

    PubMed  Google Scholar 

  38. Dickenson AH, Le Bars D, Besson JM. Endogenous opiates and nociception: a possible functional role in both pain inhibition and detection as revealed by intrathecal naloxone. Neurosci Lett 1981;24:161–4.

    PubMed  Google Scholar 

  39. Le Bars D, Chitour D, Kraus E, Dickenson AH, Besson JM. Effect of naloxone upon diffuse noxious inhibitory controls (DNIC) in the rat. Brain Res 1981;204:387–402.

    PubMed  Google Scholar 

  40. Levine JD, Gordon NC, Fields HL. Naloxone dose dependently produces analgesia and hyperalgesia in post operative pain. Nature 1979;278:740–1.

    PubMed  Google Scholar 

  41. Kayser V. Endogenous opioid systems in the modulation of pain: Behavioural studies in rat models of persistent hyperalgesia. In Gebhart GF, Hammon DL, Jensen TS eds. Proceedings of the 7th World Congress on Pain. Progress in Pain Research and Management, vol. 2. Seattle: IASP Press, 1994:553–68.

    Google Scholar 

  42. Noble F, Fournié-Zaluski M-C, Roques BP. Paradoxical analgesia induced by low doses of naloxone is not potentiated by complete inhibition of enkephalin degradation. Neuropharmacology 1994;33:135–40.

    PubMed  Google Scholar 

  43. Dickenson AH, Sullivan AF. Electrophysiological studies on the effects of intrathecal morphine on nociceptive neurones in the rat dorsal horn. Pain 1986;24:211–22.

    PubMed  Google Scholar 

  44. Bourgoin S, Le Bars D, Clot AM, Hamon M, Cesselin F. Spontaneous and evoked release of met-enkephalin-like material from the spinal cord of arthritic rats in vivo. Pain 1988;32:107–14.

    PubMed  Google Scholar 

  45. Roques BP, Noble F, Daugé V, Fournié-Zaluski M-C, Beaumont A. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacological Rev 1993;45:87–146.

    Google Scholar 

  46. Hylden JLK, Nahin RL, Traub RJ, Dubner R. Expansion of receptive fields of spinal lamina I projection neurons in rats with unilateral adjuvant-induced inflammation: the contribution of dorsal horn mechanisms. Pain 1989;37:229–43.

    PubMed  Google Scholar 

  47. Hylden JLK, Nahin RL, Traub RJ, Dubner R. Effects of spinal kappa-opioid receptor agonists on the responsiveness of nociceptive superficial dorsal horn neurones. Pain 1991;44:187–93.

    PubMed  Google Scholar 

  48. Han J. Xie C. Dynorphin: Potent analgesic effect in spinal cord of the rat. Life Sci 1982;31:1781–4.

    PubMed  Google Scholar 

  49. Piercey MF, Varner K, Schroeder LA. Analgesic actions of intraspinally administered dynorphin and ethylketocyclazocine. Eur J Pharmacol 1982;80:283–4.

    PubMed  Google Scholar 

  50. Przewlocki R, Shearman GT, Herz A. Mixed opioid/nonopioid effects of dynorphin and dynorphin related peptides after their intrathecal injection in rats. Neuropeptides 1983;2:233–40.

    Google Scholar 

  51. Hermann BH, Goldstein A. Antinociception and paralysis induced by intrathecal dynorphin A. J Pharmacol Exp Ther 1985;232:27–32.

    PubMed  Google Scholar 

  52. Spampinato S, Candelletti S. Characterization of dynorphininduced antinociception at the spinal level. Eur J Pharmacol 1985;110:21–30.

    PubMed  Google Scholar 

  53. Faden AI, Jacobs TP. Dynorphin-related peptides cause motor function dysfunction in the rat through a non-opiate action. Br J Pharmacol 1984;81:271–6.

    PubMed  Google Scholar 

  54. Caudle RM, Isaac L. Intrathecal dynorphin(1–13) results in an irreversible loss of the tail-flick reflex in rats. Brain Res 1987;435:1–6.

    PubMed  Google Scholar 

  55. Knox RJ, Dickenson AH. Effects of selective and nonselective κ-opioid receptor agonists on cutaneous C-fibre evoked responses of rat dorsal horn neurones. Brain Res 1987;415:21–9.

    PubMed  Google Scholar 

  56. Caudle RM, Isaac L. A novel interaction between dynorphin(1–13) and an N-methyl-d-aspartate site. Brain Res 1988;443:329–32.

    PubMed  Google Scholar 

  57. Neil A, Kayser V, Gacel G, Besson J-M, Guilbaud G. Opioid receptor types and antinociceptive activity in chronic inflammation: both κ- and μ-opiate agonists are enhanced in arthritic rats. Eur J Pharmacol 1986;130:203–8.

    PubMed  Google Scholar 

  58. Stein C, Millan MJ, Yassouridis A, Hertz A. Antinociceptive effects of μ- and κ-agonists in inflammation are enhanced by a peripheral opioid receptor-specific mechanism. Eur J Pharmacol 1988;155:255–64.

    PubMed  Google Scholar 

  59. Joris J, Costello A, Dubner R, Hargreaves KM. Opiates suppress carrageenan-induced edema and hyperthermia at doses that inhibit hyperalgesia. Pain 1990;43:95–103.

    PubMed  Google Scholar 

  60. Kayser V, Chen YL, Guilbaud G. Behavioural evidence for a peripheral component in the enhanced antinociceptive effect of a low dose of systemic morphine in carrageenin-induced hyperalgesic rats. Brain Res 1991;560:237–44.

    PubMed  Google Scholar 

  61. Ossipov MH, Kovelowski CJ, Porreca F. The increase in morphine antinociceptive potency produced by carrageenanhindpaw inflammation is blocked by naltrindole, a selectiveδ-opioid antagonist. Neurosci Lett 1995;184:173–6.

    PubMed  Google Scholar 

  62. Dickenson AH. Where and how do opioids act?. In Gebhart GF, Hammond DL, Jensen TS eds. Proceedings of the 7th World Congress on Pain. Progress in Pain Research and Management, vol 2. Seattle: IASP Press, 1994:525–52.

    Google Scholar 

  63. Hylden JLK, Thomas DA, Iadarola MJ, Nahin RL, Dubner R. Spinal opioid analgesic effects are enhanced in a model of unilateral inflammation/hyperalgesia: possible involvement of noradrenergic mechanisms. Eur J Pharmacol 1991:194;135–43.

    PubMed  Google Scholar 

  64. Yamamoto T, Shimoyama N, Mizuguchi T. The effects of morphine, MK-801, an NMDA antagonist, and CP-96,345, an NK1 antagonist, on the hyperesthesia evoked by carrageenan injection in the rat paw. Anesthesiol 1993;78:124–33.

    Google Scholar 

  65. Stein C, Millan MJ, Shippenberg TS, Peter K, Herz A. Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J Pharm Exp Ther 1989;248:1269–75.

    Google Scholar 

  66. Stanfa L, Dickenson A, Xu X-J, Wiesenfeld-Hallin Z. Cholecystokinin and morphine analgesia: variations on a theme. Trends Pharmacol Sci 1994;15:65–6.

    PubMed  Google Scholar 

  67. Stanfa LC, Dickenson AH. Cholecystokinin as a factor in the enhanced potency of spinal morphine following carrageenin inflammation. Br J Pharmacol 1993;108:967–73.

    PubMed  Google Scholar 

  68. Yaksh TL, Reddy SVR. Studies in the primate on the analgetic affects associated with intrathecal actions of opiates,α-adrenergic agonists and baclofen. Anesthesiol 1981;54:451–67.

    Google Scholar 

  69. Hylden JLK, Wilcox GL. Pharmacological characterization of substance P-induced nociception in mice: modulation by opioid and noradrenergic agonists at the spinal level. J Pharmacol Exp Ther 1983;226:398–404.

    PubMed  Google Scholar 

  70. Sullivan AF, Dashwood MR, Dickenson AH.α 2-Adrenoceptor modulation of nociception in rat spinal cord: location, effects and interactions with morphine. Eur J Pharmacol 1987;138:169–77.

    PubMed  Google Scholar 

  71. Wilcox GL, Carlsson K-H, Jochim A, Jurna I. Mutual potentiation of antinociceptive effects of morphine and clonidine on motor and sensory responses in rat spinal cord. Brain Res 1987;405:84–93.

    PubMed  Google Scholar 

  72. Loomis CW, Milne B, Cervenko FW. A study of the interaction between clonidine and morphine on analgesia and blood pressure during continuous intrathecal infusion in the rat. Neuropharmacol 1988;27:191–9.

    Google Scholar 

  73. Ossipov MH, Harris S, Lloyd P, Messineo E. An isobolographic analysis of the antinociceptive effect of systemically and intrathecally administered combinations of clonidine and opiates. J Pharmacol Exp Ther 1990;255:1107–16.

    PubMed  Google Scholar 

  74. Plummer JL, Cmielewski PL, Gourlay GK, Owen H, Cousins MJ. Antinociceptive and motor effects of intrathecal morphine combined with intrathecal clonidine, noradrenaline, carbachol or midazolam in rats. Pain 1992;49:145–52.

    PubMed  Google Scholar 

  75. Sullivan AF, Kalso EA, McQuay HJ, Dickenson AH. Evidence for the involvement of the μ but notδ opioid receptor subtype in the synergistic interaction between opioid andα 2 adrenergic antinociception in the rat spinal cord. Neurosci Lett 1992;139:65–8.

    PubMed  Google Scholar 

  76. Omote K, Kitahata LM, Collins JG, Nakatani K, Nakagawa I. Interaction between opiate subtypes and alpha-2 adrenergic agonists in suppression of noxiously evoked activity of WDR neurones in the spinal dorsal horn. Anesthesiology 1991;74:737–43.

    PubMed  Google Scholar 

  77. Roerig SC, Lei S, Kitto K, Hylden JLK, Wilcox GL. Spinal interactions between opioids and noradrenergic agonists in mice: multiplicity involves delta and alpha-2 receptors. J Pharmacol Exp Ther 1992;262:365–74.

    PubMed  Google Scholar 

  78. Gordon NC, Heller PH, Levine JD. Enhancement of pentazocine analgesia by clonidine. Pain 1992;48:167–9.

    PubMed  Google Scholar 

  79. Baber NS, Dourish CT, Hill DR. The role of CCK, caerulein, and CCK antagonists in nociception. Pain 1989;39:307–28.

    PubMed  Google Scholar 

  80. Itoh S, Katsuura G, Maeda Y. Caerulein and cholecystokinin suppressβ-endorphin-induced analgesia in the rat. Eur J Pharmacol 1982;80:421–5.

    PubMed  Google Scholar 

  81. Faris PL, Komisaruk BR, Watkins LR, Mayer DJ. Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science 1983;219:310–2.

    PubMed  Google Scholar 

  82. Watkins LR, Kinscheck IB, Mayer DJ. Potentiation of opiate analgesia and apparent reversal of morphine tolerance by proglumide. Science 1984;224:395–6.

    PubMed  Google Scholar 

  83. Tang J, Chou J, Iadarola M, Yang H-Y, Costa E. Proglumide prevents and curtails acute tolerance to morphine in rats. Neuropharmacol 1984;23:715–8.

    Google Scholar 

  84. Panerai AE, Rovati LC, Cocco E, Sacerdote P, Mantegazza P. Dissociation of tolerance and dependence to morphine: a possible role for cholecystokinin. Brain Res 1987;410:52–60.

    PubMed  Google Scholar 

  85. Dourish CT, Hawley D, Iversen SD. Enhancement of morphine analgesia and prevention of morphine tolerance in the rat by the cholecystokinin antagonist, L-364,718. Eur J Pharmacol 1988;147:469–72.

    PubMed  Google Scholar 

  86. Dourish CT, O'Neill MF, Coughlan J, Kitchener SJ, Hawley D, Iversen SD. The selective CCK-B receptor antagonist L-365,260 enhances morphine analgesia and prevents morphine tolerance in the rat. Eur J Pharmacol 1990;176:35–44.

    PubMed  Google Scholar 

  87. Xu X-J, Wiesenfeld-Hallin Z, Hughes J, Horwell DC, Hökfelt T. C1988, a selective antagonist of cholecystokininB receptors prevents morphine tolerance in the rat. Br J Pharmacol 1992;105:591–6.

    PubMed  Google Scholar 

  88. Watkins LR, Kinscheck IB, Mayer DJ. Potentiation of morphine analgesia by the cholecystokinin antagonist proglumide. Brain Res 1985;327:169–80.

    PubMed  Google Scholar 

  89. Wiesenfeld-Hallin Z, Duranti R. Intrathecal cholecystokinin interacts with morphine but not substance P in modulating the nociceptive flexion reflex in the rat. Peptides 1987;8:153–8.

    PubMed  Google Scholar 

  90. Magnuson DSK, Sullivan AF, Simmonet G, Roques BP, Dickenson AH. Differential interactions of cholecystokinin and FLFQPQRFamide with μ andδ opioid antinociception in rat spinal cord. Neuropeptides 1990;16:213–8.

    PubMed  Google Scholar 

  91. Wang X-J, Wang X-H, Han J-S. Cholecystokinin octapeptide antagonized opioid analgesia mediated by μ- and κ- but notδ-receptors in the spinal cord of the rat. Brain Res 1990;523:5–10.

    PubMed  Google Scholar 

  92. Kellstein DE, Price DD, Mayer DJ. Cholecystokinin and its antagonist lorgumide respectively attenuate and facilitate morphine-induced inhibition of C-fiber evoked discharges of dorsal horn nociceptive neurons. Brain Res 1991;540:302–6.

    PubMed  Google Scholar 

  93. Zhou Y, Sun Y-H, Zhang Z-W, Han J-S. Increased release of immunoreactive cholecystokinin octapeptide by morphine and potentiation of μ-opioid analgesia by CCKB receptor antagonist L-365,260 in rat spinal cord. Eur J Pharmacol 1993;234:147–54.

    PubMed  Google Scholar 

  94. Barbaz BS, Hall NR, Liebman JM. Antagonism of morphine analgesia by CCK-8-S does not extend to all assays nor all opiate analgesics. Peptides 1989;9:1295–300.

    Google Scholar 

  95. Hökfelt T, Herrera-Marschitz M, Seroogy K, Ju G, Staines WA, Holets V et al. Immunohistochemical studies on cholecystokinin (CCK)-immunoreactive neurons in the rat using sequence specific antisera and with special reference to the caudate nucleus and primary sensory neurons. J Chem Neuroanat 1988;1:11–52.

    PubMed  Google Scholar 

  96. Hill DR, Woodruff GN. Differentiation of central cholecystokinin receptor binding sites using the non-peptide antagonists MK-329 and L-365,260. Brain Res 1990;526:276–83.

    PubMed  Google Scholar 

  97. Ghilardi JR, Allen CJ, Vigna SR, McVey DC, Mantyh PW. Trigeminal and dorsal root ganglion neurons express CCK receptor binding sites in the rat, rabbit, and monkey: possible site of opiate-CCK analgesic interactions. J Neurosci 1992;12:4854–66.

    PubMed  Google Scholar 

  98. Besse D, Lombard MC, Zajac JM, Roques BP, Besson JM. Pre- and postsynaptic distribution of μ,δ and κ opioid receptors in the superficial layers of the cervical dorsal horn of the rat spinal cord. Brain Res 1990;521:15–22.

    PubMed  Google Scholar 

  99. Wang X-J, Han J-S. Modification by cholecystokinin octapeptide of the binding of μ-,δ-, and κ-opioid receptors. J Neurochem 1990;55:1379–82.

    PubMed  Google Scholar 

  100. Slaninova J, Knapp RJ, Wu J, Fang S-N, Kramer T, Burks TF et al. Opioid receptor binding properties of analgesic analogues of cholecystokinin octapeptide. Eur J Pharmacol 1991;200:195–8.

    PubMed  Google Scholar 

  101. Wang J, Ren M, Han J. Mobilization of clacium from intracellular stores as one of the mechanisms underlying the antiopioid effect of cholecystokinin octapeptide. Peptides 1992;13:947–51.

    PubMed  Google Scholar 

  102. Ossipov MH, Kovelowski CJ, Vanderah T, Porreca F. Naltrindole, an opioidδ antagonist, blocks and enhancement of morphine-antinociception induced by a CCKB antagonist in the rat. Neurosci Lett 1994;181:9–12.

    PubMed  Google Scholar 

  103. Vanderah T, Lai J, Yamamura HI, Porreca F. Antisense oligodeoxynucleotide to the CCKB receptor produces naltrindole- and [Leu5]enkephalin antiserum-sensitive enhancement of morphine antinociception. NeuroReport 1994;5:2601–5.

    PubMed  Google Scholar 

  104. Xu X-J, Puke MJC, Verge VMK, Wiesenfeld-Hallin Z, Hughes J, Hökfelt T. Up-regulation of cholecystokinin in primary sensory neurons is associated with morphine insensitivity in experimental neuropathic pain in the rat. Neurosci Lett 1993;152:129–32.

    PubMed  Google Scholar 

  105. Verge VMK, Wiesenfeld-Hallin Z, Hökfelt T. Cholecystokinin in mammalian primary sensory neurons and spinal cord: In situ hybridization studies in rat and monkey. Eur J Neurosci 1993;5:240–50.

    PubMed  Google Scholar 

  106. Westlund KN. Anatomy of noradrenergic pathways modulating pain. In Besson JM, Guilbaud G eds. Towards the use of noradrenergic agonists for the treatment of pain. Excertpa Medica. Amsterdam: Elsevier, 1992:91–118.

    Google Scholar 

  107. Headley PM, Duggan AW, Griersmith BT. Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Brain Res. 1978;145:185–9.

    PubMed  Google Scholar 

  108. Fleetwood-Walker SM, Mitchell R, Hope PJ, Molony V, Iggo A. Anα 2 receptor mediates the selective inhibition by noradrenaline of nociceptive responses of identified dorsal horn neurones. Brain Res 1985;334:243–54.

    PubMed  Google Scholar 

  109. Yaksh TL. Pharmacology of spinal adrenergic systems which modulate spinal nociceptive processing. Pharmacol Biochem Behav 1985;22:845–58.

    PubMed  Google Scholar 

  110. Sullivan AF, Kalso EA, McQuay HJ, Dickenson AH. The antinociceptive actions of dexmedetomidine on dorsal horn neuronal responses in the anaesthetized rat. Eur J Pharmacol 1992;215:127–33.

    PubMed  Google Scholar 

  111. Dickenson AH, Sullivan AF. Combination therapy in analgesia; seeking synergy. Curr Opin Anaesthesiol 1993;6:861–5.

    Google Scholar 

  112. Weil-Fugazza J, Godefroy F, Manceau V, Besson J-M. Increased norephinephrin and uric acid levels in the spinal cord of arthritic rats. Brain Res 1986;374:190–4.

    PubMed  Google Scholar 

  113. Cervero F, Schaible H-G, Schmidt RF. Tonic descending inhibition of spinal cord neurones driven by joint afferents in normal cats and in cats with an inflamed knee joint. Exp Brain Res 1991;83:675–8.

    PubMed  Google Scholar 

  114. Schaible H-G, Neugebauer V, Cervero F, Schmidt RF. Changes in tonic descending inhibition of spinal neurones with articular input during the development of acute arthritis in the cat. J Neurophysiol 1991;66:1021–32.

    PubMed  Google Scholar 

  115. Nagasaka H, Yaksh TL. Pharmacology of intrathecal adrenergic agonists: cardiovascular and nociceptive reflexes in halothane-anesthetized rats. Anesthesiol 1990;73:1198–207.

    Google Scholar 

  116. Takano Y, Yaksh TL. Characterization of the pharmacology of intrathecally administered alpha-2 agonists and antagonists in rats. J Pharmacol Exp Ther 1992;261:764–72.

    PubMed  Google Scholar 

  117. Sagen J, Proudfit HK. Effects of intrathecally administered noradrenergic antagonists on nociception in the rat. Brain Res 1984;310:295–301.

    PubMed  Google Scholar 

  118. Stanfa LC, Dickenson AH. Enhanced alpha-2 adrenergic controls and spinal morphine potency in inflammation. NeuroReport 1994;5:469–72.

    PubMed  Google Scholar 

  119. Kayser V, Guilbaud G, Besson JM. Potent antinociceptive effects of clonidine systemically administered in an experimental model of clinical pain, the arthritic rat. Brain Res 1992;593:7–13.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanfa, L., Dickenson, A. Spinal opioid systems in inflammation. Inflamm Res 44, 231–241 (1995). https://doi.org/10.1007/BF01782974

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01782974

Key words

Navigation