Skip to main content
Log in

Caldesmon and the structure of smooth muscle thin filaments: electron microscopy of isolated thin filaments

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Native and synthetic vertebrate smooth muscle thin filaments have been examined by electron microscopy in order to determine the arrangement of the regulatory protein caldesmon. In synthetic filaments of actin—caldesmon, long slender molecules were sometimes seen running along the thin filament, suggesting that caldesmon can associate with actin along its length, while at other times lateral projections were observed. In native filaments, containing actin, caldesmon and tropomyosin, we found no evidence for lateral projections extending from the filaments, suggesting that caldesmon does not act as a crosslinking proteinin vivo. In contrast, elongated molecules were clearly seen following the long pitch actin helices. We suggest that these may represent an association of caldesmon and tropomyosin. Antibodies developed against an N-terminal fragment of caldesmon caused thin filaments to aggregate laterally into arrays displaying approximately 35–38 nm repeats; thin filament aggregates with this periodicity were obtained previously (Lehmanet al., 1989) using antibodies to the C-terminal segment of caldesmon. These results suggest that both ends of caldesmon are closely associated with the shaft of the thin filament, supporting a model in which the elongated caldesmon molecule runs along the filament, possibly interacting with tropomyosin, following the long pitch actin helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bretscher, A. (1984) Smooth muscle caldesmon. Rapid purification and F-actin crosslinking properties.J. Biol. Chem. 259, 12873–80.

    PubMed  Google Scholar 

  • Castellani, L., Offer, G., Elliot, A &O'Brien, E. J. (1981) Structure of filamin and the F-actin-heavy merofilamin complex.J. Muscle Res. Cell Mot. 2, 193–202.

    Google Scholar 

  • Chacko, S., Conti, M. A. &Adelstein, R. S. (1977) Effect of phosphorylation of smooth muscle myosin on actin activation and Ca2+ regulation.Proc. Natl. Acad. Sci. U.S.A. 79, 292–6.

    Google Scholar 

  • Cross, R. A., Cross, K. E. &Small, J. V. (1987) Salt dependent dimerisation of caldesmon.FEBS. Lett. 219, 306–10.

    PubMed  Google Scholar 

  • Dabrowska, R. &Galazkiewicz, B. (1986) Possible role of caldesmon in the regulation of smooth muscle and non-muscle motile systems.Biomed. Biochem. Acta 45, S153–8.

    Google Scholar 

  • Dillon, P. F., Askoy, M. O., Driska, S. P. &Murphy, R. A. (1981) Myosin phosphorylation and the crossbridge cycle in arterial smooth muscle.Science 211, 495–7.

    PubMed  Google Scholar 

  • Drabikowski, W. &Gergely, J. (1964) The effect of the temperature of extraction and of tropomyosin on the viscosity of actin. InBiochemistry of Muscle Contraction. (edited byGergely J.) pp. 125–31. Boston: Little, Brown & Co.

    Google Scholar 

  • Fujii, T., Imai, M., Rosenfeld, G. C. &Bryan, J. (1987) Domain mapping of chicken gizzard caldesmon.J. Biol. Chem. 262, 2757–63.

    PubMed  Google Scholar 

  • Fujii, T., Ozawa, J., Ogoma, Y &Kondo, Y (1988) Interaction between chicken gizzard caldesmon and tropomyosin.J. Biochem (Tokyo) 104, 734–7.

    Google Scholar 

  • Furst, D. O., Cross, R. A., De Mey, J. &Small, J. V. (1986) Caldesmon is an elongated, flexible molecule localized in the actomyosin domains of smooth muscle.EMBO J. 5, 251–7.

    PubMed  Google Scholar 

  • Gorecka, A., Aksoy, M. O. &Hartshorne, D. J. (1976) The effect of phosphorylation of gizzard myosin on actinactivation.Biochem. Biophys. Res. Commun. 71, 325–31.

    PubMed  Google Scholar 

  • Graceffa, P., Wang, C-L. A. &Stafford, W. F. (1988) Caldesmon. Molecular weight and subunit composition by analytical ultracentrifugation.J. Biol. Chem. 263, 14196–202.

    PubMed  Google Scholar 

  • Hartwig, J. H. &Stossel, T. P. (1981) Structure of macrophage actin-binding protein molecules in solution and interacting with actin filaments.J. Mol. Biol 145, 563–81.

    PubMed  Google Scholar 

  • Hayashi, K., Yamada, S., Kanda, K., Kimizuka, F., Kato, I. &Sobue, K. (1989) The 35-kDa fragment of h-caldesmon conserves two consensus sequences of the tropomyosin binding domain of troponin-T.Biochem. 28, 38–45.

    Google Scholar 

  • Heuser, J (1981) Quick-freeze, deep-etch preparation of samples for 3-D electron microscopy.Trends Biochem. Sci. 6, 64–8.

    Google Scholar 

  • Jokusch, B. M. &Isenberg, G. (1981) Interaction of α-actinin and vinculin with actin: Opposite effects on filament network formation.Proc. Natl. Acad. Sci. U.S.A. 78, 3005–9.

    PubMed  Google Scholar 

  • Katayama, E., Horiuchi, K. Y. &Chacko, S. (1989) Characteristics of myosin and tropomyosin binding regions of smooth muscle caldesmon.Biochem. Biophys. Res. Commun. 160, 1316–22.

    PubMed  Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4.Nature 227, 680–5.

    PubMed  Google Scholar 

  • Lehman, W (1986) The effect of calcium on the aggregation of chicken thin filaments.J. Muscle. Res. Cell Mot. 7, 537–49.

    Google Scholar 

  • Lehman, W., Craig, R., Lui, J. &Moody, C. (1989) Caldesmon and the structure of smooth muscle thin filaments: Immunolocalization of caldesmon on thin filaments. J.Muscle Res. Cell Mot. 10, 101–12.

    Google Scholar 

  • Lehman, W., Head, J. F. &Grant, P. W. (1980) The stoichiometry and location of troponin-I and troponin-C like proteins in the myofibril of the bay scallopAequipecten irradians. Biochem. J. 187, 447–56.

    Google Scholar 

  • Lynch, W. P., Riseman, V. M. &Bretscher, A. (1987) Smooth muscle caldesmon is an extended flexible monomeric protein in solution that can readily undergo reversible intra- and inter-molecular sulfhydral crosslinking. A mechanism for caldesmon's F-actin bundling activity.J. Biol. Chem. 262, 7429–37.

    PubMed  Google Scholar 

  • Marston, S. B. &Lehman, W. (1985) Caldesmon is a Ca2+ -regulatory component of native smooth muscle thin filaments.Biochem. J. 231, 517–22.

    PubMed  Google Scholar 

  • Marston, S. B., Redwood, C. S. &Lehman, W. (1988) Reversal of caldesmon function by anti-caldesmon antibodies confirms its role in the calcium regulation of vascular smooth muscle thin filaments.Biochem. Biophys. Res. Commun. 155, 197–202.

    PubMed  Google Scholar 

  • Marston, S. B. &Smith, C. W. J. (1984) Purification and properties of Ca2+ regulated thin filaments and F-actin from sheep aorta smooth muscle.J. Muscle Res. Cell Mot. 5, 559–75.

    Google Scholar 

  • Moody, C. J., Marston, S. B. &Smith, C. W. J. (1985) Bundling of actin filaments by caldesmon is not related to its regulatory function.FEBS. Lett. 191, 107–12.

    PubMed  Google Scholar 

  • Ohtsuki, I., Masaki, T., Nonomura, Y. &Ebashi, S. (1967) Periodic distribution of troponin along the thin filament.J. Biochem. (Tokyo) 61, 817–19.

    Google Scholar 

  • Riseman, V. M., Lynch, W. P., Nefsky, B. &Bretscher, A. (1989) The calmodulin and F-actin binding sites of smooth muscle caldesmon lie in the carboxyl-terminal domain whereas the molecular weight heterogeneity lies in the middle of the molecule.J. Biol Chem. 264, 2869–75.

    PubMed  Google Scholar 

  • Sobieszek, A. (1977) Ca2+ -linked phosphorylation of a light chain of vertebrate smooth muscle myosin.Eur. J. Biochem. 73, 477–83.

    PubMed  Google Scholar 

  • Sober, H. A. &Peterson, E. A. (1958) Protein chromatography on ion exchange cellulose.Fedn. Proc. 17, 1116–26.

    Google Scholar 

  • Sobue, K., Muramoto, Y., Fujii, M. &Kakiuchi, S. (1981) Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin.Proc. Natl. Acad. Sci. U.S.A. 78, 5652–5.

    PubMed  Google Scholar 

  • Spudich, J. A. &Watt, S. (1971) The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin.J. Biol. Chem. 246, 4866–71.

    Google Scholar 

  • Straub, F. B. (1942) Actin.In Stud. Inst. Med. Chem. Univ. Szeged. 2, 3–16.

    Google Scholar 

  • Sutherland, C. &Walsh, M. K. (1989) Phosphorylation of caldesmon prevents its interaction with smooth muscle myosin.J. Biol. Chem. 264, 575–83.

    Google Scholar 

  • Szpacenko, A. &Dabrowska, R. (1986) Functional domain of caldesmon.FEBS Lett. 202, 182–6.

    PubMed  Google Scholar 

  • Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets. Procedure and some applications.Proc. Natl Acad. Sci. (USA) 76, 4350–4.

    Google Scholar 

  • Tyler, J. M. &Branton, D. (1981) Rotary shadowing of extended molecules dried from glycerol.J. Ultrastruct. Res. 71, 95–102.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moody, C., Lehman, W. & Craig, R. Caldesmon and the structure of smooth muscle thin filaments: electron microscopy of isolated thin filaments. J Muscle Res Cell Motil 11, 176–185 (1990). https://doi.org/10.1007/BF01766496

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01766496

Keywords

Navigation