Skip to main content
Log in

Changes in the cytoskeleton of 3T3 fibroblasts induced by the phosphatase inhibitor, calyculin-A

  • Papers
  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Addition of the protein phosphatase inhibitor, calyculin-A, to 3T3 fibroblasts causes a marked change in cell morphology. Initially the cells become rounded, develop surface blebs and then detach from the substratum. In the detached cells an unusual ball-like structure is observed. This study focuses on the cytoskeleton during these calyculin-A-induced morphological changes. Stress fibres disappear as the cells begin to round and aggregates of actin are formed towards the apical surface of the cell. These aggregates condense, in the detached cells, to form the ball structure of approximately 3 μm diameter. Between the ball and the nucleus are cables of intermediate filaments that appear to be attached to the surface of the ball and to the nuclear lamina. Using a procedure designed for the isolation of nuclei the nucleus-ball complex can be obtained. Analysis of the nucleus-ball preparation by immunofluorescence and electron microscopy demonstrate that the ball contains actin and that intermediate filaments are located between the ball and the nucleus. In this preparation, the intermediate filaments also appear to attach to the surfaces of the ball and the nucleus. Electrophoretic analysis of the nucleus-ball preparation indicates that, in addition to actin, a major component of the ball is myosin. It is suggested that the formation of the ball is caused by an actin-myosin-based contractile process, initiated by the phosphorylation of myosin. The aggregation of the actomyosin draws together the intermediate filaments into the area between the ball and nucleus. This hypothesis requires that vimentin binds both to the nucleus and to some component of the ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barak, L. S., Yocum, R. R., Nothnagel, E. A. &Webb, W. W. (1980) Fluorescence staining of the actin cytoskeleton in living cells with F-nitrobenz-2-oxa-l,3-diazole-phallacidin.Proc. Natl. Acad. Sci. USA 77, 980–4.

    PubMed  Google Scholar 

  • Beckerle, M. C. (1990) The adhesion plaque protein, talin, is phosphorylatedin vivo in chicken embryo fibroblasts exposed to a tumour-promoting phorbol ester.Cell Regul. 1, 227–36.

    PubMed  Google Scholar 

  • Chartier, L., Rankin, L. L., Allen, R. E., Kato, Y., Fusetani, N., Karaki, H., Watabe, S. &Hartshorne, D. J. (1991) Calyculin-A increases the level of protein phosphorylation and changes the shape of 3T3 fibroblasts.Cell Motil. Cytoskeleton 18, 26–40.

    PubMed  Google Scholar 

  • Chou, Y.-H., Bischoff, J. R., Beach, D. &Goldman, R. D. (1990) Intermediate filament reorganization during mitosis is mediated by p34cdc2 phosphorylation of vimentin.Cell 62, 1063–71.

    PubMed  Google Scholar 

  • Cohen, P. &Cohen, P. T. W. (1989) Protein phosphatases come of age.J. Biol. Chem. 264, 21435–8.

    PubMed  Google Scholar 

  • Dessev, G. N. (1990) The nuclear lamina. An intermediate filament protein structure of the cell nucleus. InCellular and Molecular Biology of Intermediate Filaments (edited byGoldman, R. D. &Steinert, P. M.) pp. 129–45. New York: Plenum Press.

    Google Scholar 

  • Eckert, B. S. (1985) Alteration of intermediate filament distribution in PtK-1 cells by acrylamide.Eur. J. Cell Biol. 37, 169–74.

    PubMed  Google Scholar 

  • Eckert, B. S., Daley, R. A. &Parysek, L. M. (1982) Assembly of keratin onto PtK1 cytoskeletons: evidence for an intermediate filament organizing centre.J. Cell Biol. 92, 575–8.

    PubMed  Google Scholar 

  • Eriksson, J. E., Paatero, G. I. L., Meriluoto, J. A. O., Codd, G. A., Kass, G. E. N., Nicotera, P. &Orrenius, S. (1989) Rapid microfilament reorganization induced in isolated rat hepatocytes by microcystin-LR, a cyclic peptide toxin.Exp. Cell Res. 185, 86–100.

    PubMed  Google Scholar 

  • Eriksson, J. E., Toivola, D., Meriluoto, J. A. O., Karaki, H., Han, Y.-G. &Hartshorne, D. J. (1990) Hepatocyte deformation induced by cyanobacterial toxins reflects inhibition of protein phosphatases.Biochem. Biophys. Res. Commun. 173, 1347–53.

    PubMed  Google Scholar 

  • Geisler, N., Hatzfeld, M. &Weber, K. (1989) Phosphorylationin vitro of vimentin by protein kinases A and C is restricted to the head domain. Identification of the phosphoserine sites and their influence on filament formation.Eur. J. Biochem. 183, 441–7.

    PubMed  Google Scholar 

  • Georgatos, S. D. &Blobel, G. (1987a) Two distinct attachment sites for vimentin along the plasma membrane and the nuclear envelope in avian erythrocytes: a basis for a vectorial assembly of intermediate filaments.J. Cell Biol. 105, 105–15.

    PubMed  Google Scholar 

  • Georgatos, S. D. &Blobel, G. (1987b) Lamin B constitutes an intermediate filament attachment site at the nuclear envelope.J. Cell Biol. 105, 117–25.

    PubMed  Google Scholar 

  • Georgatos, S. D., Weber, K., Geisler, N. &Blobel, G. (1987) Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: evidence for a conserved site-specificity in intermediate filament-membrane interactions.Proc. Natl. Acad. Sci. USA 84, 6780–4.

    PubMed  Google Scholar 

  • Godman, G., Woda, B., Kolberg, R. &Berl, S. (1980) Redistribution of contractile and cytoskeletal components induced by cytochalasin. II. In Hela and HEp2 cells.Eur. J. Cell Biol. 22, 745–54.

    PubMed  Google Scholar 

  • Goldman, R. D., Goldman, A. E., Green, K. J., Jones, J. C. R., Lieska, N. &Yang, H.-Y. (1985) Intermediate filaments: possible functions as cytoskeletal connecting links between the nucleus and the cell surface.Ann. NY Acad. Sci. 455, 1–17.

    Google Scholar 

  • Green, K. J. &Jones, J. C. R. (1990) Interaction of intermediate filaments with the cell surface. InCellular and Molecular Biology of Intermediate Filaments (edited byGoldman, R. D. &Steinert, P. M.) pp. 147–71. New York: Plenum Press.

    Google Scholar 

  • Haystead, T. A. J., Sim, A. T. R., Carling, D., Honnor, R. C., Tsukitani, Y., Cohen, P. &Hardie, D. G. (1989) Effects of the tumour promoter okadaic acid on intracellular protein phosphorylation and metabolism.Nature 337, 78–81.

    PubMed  Google Scholar 

  • He, D., Nickerson, J. A. &Penman, S. (1990) Core filaments of the nuclear matrix.J. Cell Biol. 110, 569–80.

    PubMed  Google Scholar 

  • Hescheler, J., Mieskes, G., Rüegg, J. C., Takai, A. &Trautwein, W. (1988) Effects of a protein phosphatase inhibitor, okadaic acid, on membrane currents of isolated guinea pig cardiac myocytes.Pflügers Arch. 412, 248–52.

    Google Scholar 

  • Hollenbeck, P. J., Bershadsky, A. D., Pletjushkina, O. Y., Tint, I. S. &Vasiliev, J. M. (1989) Intermediate filament collapse is an ATP-dependent and actin-dependent process.J. Cell Sci. 92, 621–31.

    PubMed  Google Scholar 

  • Hori, M., Magae, J., Han, Y.-G., Hartshorne, D. J. &Karaki, H. (1991) A novel protein phosphatase inhibitor, tautomycin. Effect on smooth muscle.FEBS Lett. 285, 145–8.

    PubMed  Google Scholar 

  • Inagaki, M., Gonda, Y., Ando, S., Kitamura, S., Nishi, Y. &Sato, C. (1989) Regulation of assembly-disassembly of intermediate filamentsin vitro.Cell Struct. Funct. 14, 279–86.

    PubMed  Google Scholar 

  • Ishihara, H., Martin, B. L., Brautigan, D. L., Karaki, H., Ozaki, H., Kato, Y., Fusetani, N., Watabe, S., Hashimoto, K., Uemura, D. &Hartshorne, D. J. (1989) Calyculin A and okadaic acid: inhibitors of protein phosphatase activity.Biochem. Biophys. Res. Commun. 159, 871–7.

    PubMed  Google Scholar 

  • Ito, M., Pierce, P. R., Allen, R. E. &Hartshorne, D. J. (1989) Effect of monoclonal antibodies on the properties of smooth muscle myosin.Biochemistry 28, 5567–72.

    PubMed  Google Scholar 

  • Kato, Y., Fusetani, N., Matsunaga, S. &Hashimoto, K. (1986) Calyculin A, a novel antitumour metabolite from the marine spongeDiscodermia calyx.J. Am. Chem. Soc. 108, 2780–1.

    Google Scholar 

  • Klymkowsky, M. W., Bachant, J. B. &Domingo, A. (1989) Functions of intermediate filaments.Cell Motil. Cytoskel. 14, 309–31.

    Google Scholar 

  • Lamb, N. J. C., Fernandez, A., Feramisco, J. R. &Welch, W. J. (1989) Modulation of vimentin-containing intermediate filament distribution and phosphorylation in living fibroblasts by the cAMP-dependent protein kinase.J. Cell Biol. 108, 2409–22.

    PubMed  Google Scholar 

  • Mackintosh, C. &Klumpp, S. (1990) Tautomycin from the bacteriumStreptomyces verticillatus. Another potent and specific inhibitor of protein phosphatases 1 and 2A.FEBS Lett. 277, 137–40.

    PubMed  Google Scholar 

  • Magae, J., Watanabe, C., Osada, H., Cheng, X.-C. &Isono, K. (1988) Induction of morphological change of human myeloid leukaemia and activation of protein kinase C by a novel antibiotic, tautomycin.J. Antibiotics 41, 932–7.

    Google Scholar 

  • Magae, J., Osada, H., Fujiki, H., Saido, T. C., Suzuki, K., Nagai, K., Yamasaki, M. &Isono, K. (1990) Morphological changes of human myeloid leukaemia K562 cells by a protein phosphatase inhibitor, tautomycin.Proc. Jn Acad. 66B, 209–12.

    Google Scholar 

  • Malorni, W., Fiorentini, C., Paradisi, S., Giuliano, M., Mastrantonio, P. &Donelli, G. (1990) Surface blebbing and cytoskeletal changes inducedin vitro by toxin B fromClostridium difficile: an immunochemical and ultrastructural study.Exp. Mol. Pathol. 52, 340–56.

    PubMed  Google Scholar 

  • Mittal, B., Sanger, J. M. &Sanger, J. W. (1989) Visualization of intermediate filaments in living cells using fluorescently labelled desmin.Cell Motil. Cytoskel 12, 127–38.

    Google Scholar 

  • O'Shea, J. M., Robson, R. M., Huiatt, T. W., Hartzer, M. K. &Stromer, M. H. (1979) Purified desmin from adult mammalian skeletal muscle: a peptide mapping comparison with desmins from adult mammalian and avian smooth muscle.Biochem. Biophys. Res. Commun. 89, 972–80.

    PubMed  Google Scholar 

  • Pruss, R. M., Mirsky, R. &Raff, M. C. (1981) All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody.Cell 27, 419–28.

    PubMed  Google Scholar 

  • Rubenstein, P. A. (1981) Differential behaviour of gizzard isoactins.Arch. Biochem. Biophys. 210, 598–608.

    PubMed  Google Scholar 

  • Skalli, O. &Goldman, R. D. (1991) Recent insights into the assembly, dynamics and function of intermediate filament networks.Cell Motil. Cytoskel. 19, 67–79.

    Google Scholar 

  • Starger, J., Brown, W., Goldman, A. &Goldman, R. D. (1978) Biochemical and immunological analyses of rapid purified 10-nm filaments from BHK-21 cells.J. Cell Biol. 78, 93–109.

    PubMed  Google Scholar 

  • Stromer, M. H. (1990) Intermediate (10-nm) filaments in muscle. InCellular and Molecular Biology of Intermediate Filaments (edited byGoldman, R. D. &Steinert, P. M.) pp. 19–36. New York: Plenum Press.

    Google Scholar 

  • Tachibana, K., Sheuer, P. J., Tsukitani, Y., Kikuchi, H., Van Eugen, E., Clardy, J., Gopichand, Y. &Schmitz, F. J. (1981) Okadaic acid, a cytotoxic pol ether from two marine sponges of the genusHalichondria.J. Am. Chem. Soc. 103, 2469–71.

    Google Scholar 

  • Temmink, J. H. M. &Spiele, H. (1981) Effect of vinblastine and cytochalasin B on the cytoskeletal domains in 3T3 cells.J. Cell Sci. 48, 55–73.

    PubMed  Google Scholar 

  • Tint, I. S., Hollenbeck, P. J., Verkhovsky, A. B., Surgucheva, I. G. &Bershadsky, A. D. (1991) Evidence that intermediate filament reorganization is induced by ATP-dependent contraction of the actomyosin cortex in permeabilized fibroblasts.J. Cell Sci. 98, 375–84.

    PubMed  Google Scholar 

  • Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.Proc. Natl. Acad. Sci. USA 76, 4350–4.

    PubMed  Google Scholar 

  • Turner, C. E., Pavalko, F. M. &Burridge, K. (1989) The role of phosphorylation and limited proteolytic cleavage of talin and vinculin in the disruption of focal adhesion integrity.J. Biol. Chem. 264, 11938–44.

    PubMed  Google Scholar 

  • Weber, K., Rathke, P. C., Osborn, M. &Franke, W. W. (1976) Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochalasin B (CB).Exp. Cell Res. 102, 285–97.

    PubMed  Google Scholar 

  • Wilson, A. K., Takai, A., Rüegg, J. C. &De Lanerolle, P. (1991) Okadaic acid, a phosphatase inhibitor, decreases macrophage motility,Am. J. Physiol. 260, L105–12.

    PubMed  Google Scholar 

  • Yang, H.-Y., Lieska, N. &Goldman, R. D. (1990) Intermediate filament-associated proteins. InCellular and Molecular Biology of Intermediate Filaments (edited byGoldman, R. D. &Steinert, P. M.) pp. 371–91. New York: Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano, K., Chartier, L., Taylor, R.G. et al. Changes in the cytoskeleton of 3T3 fibroblasts induced by the phosphatase inhibitor, calyculin-A. J Muscle Res Cell Motil 13, 341–353 (1992). https://doi.org/10.1007/BF01766462

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01766462

Keywords

Navigation