Skip to main content
Log in

Characteristics of skeletal muscle calsequestrin: comparison of mammalian, amphibian and avian muscles

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Summary

Calsequestrin was identified in the isolated sarcoplasmic reticulum from skeletal muscle of three mammalian species (man, rat and rabbit) and from frog and chicken muscle, using electrophoretic and immunoblot techniques. It was further characterized in sarcoplasmic reticulum protein mixtures and at several stages of purification, following extraction with EDTA.

We found extensive similarities in apparent molecular weight values, Stains All staining properties and in Cleveland's peptide maps, between mammalian calsequestrins, and no detectable difference within a species between fast and slow muscle. Human calsequestrin, with an apparent molecular weight of 60 000 when measured at alkaline pH and of 41 000 when measured at neutral pH, appears to be the smallest in size. Frog calsequestrin, although weakly cross-reactive with rabbit calsequestrin and having a relatively higher apparent molecular weight at alkaline pH (72 000), shares several significant properties with mammalian calsequestrins. It bound calcium with a high capacity (1300 nmol per mg protein), it contained about 32% acidic amino acid residues and focused at closely similar pI values. We observed the formation of a complex with Stains All absorbing maximally at 535 nm, rather than at 600 nm, and an even more marked shift in apparent molecular weight at neutral pH.

We found distinct differences in the case of chicken calsequestrin, in addition to those previously reported. It is a highly acidic, calcium-precipitable protein, but its amino acid composition is contradistinguished by a higher ratio of glutamate to aspartate and its rate of electrophoretic mobility is minimally affected by changes in pH. It stained deep bluish with Stains All after gel electrophoresis and yielded a protein-dye complex in aqueous solution, absorbing maximally at 560 nm, and finally, it bound fluorescent Concanavalin A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashhurst, D. E. (1969) The fine structure of pigeon breast muscle.Tiss. Cell 1, 485–96.

    Google Scholar 

  • Bean, R. C. M., Sheperd, W. C., Kay, R. E. &Walwick, E. R. (1965) Spectral changes in a cationic dye due to interactions with macromolecules. III. Stoichiometry and mechanism of the complexing reaction.J. phys. Chem. 69, 4368–79.

    Google Scholar 

  • Biral, D., Damiani, E., Margreth, A. &Scarpini, E. (1984) Myosin subunit composition in human developing muscle.Biochem. J. 224, 923–31.

    Google Scholar 

  • Campbell, K. P., Franzini-Armstrong, C. &Shamoo, A. E. (1980) Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the ‘sarcoplasmic reticulum feet’ associated with heavy sarcoplasmic reticulum vesicles.Biochim. biophys. Acta 602, 97–116.

    Google Scholar 

  • Campbell, K. P. &MacLennan, D. H. (1981) Purification and characterization of the 53 000-dalton glycoprotein from sarcoplasmic reticulum.J. biol. Chem. 256, 4626–32.

    Google Scholar 

  • Campbell, K. P., MacLennan, D. H., Jorgensen, A. O. &Mintzer, M. C. (1983a) Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53 000 dalton glycoprotein.J. biol. Chem. 258, 1197–204.

    Google Scholar 

  • Campbell, K. P., MacLennan, D. H. &Jorgensen, A. O. (1983b) Staining of the Ca-binding proteins, calsequestrin, calmodulin, troponin C, and S-100 with the cationic dye ‘Stains All’.J. biol. Chem. 258, 11267–73.

    Google Scholar 

  • Cleveland, D. W., Fischer, S. G., Kirschner, M. W. &Laemmli, U. K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulphate by gel electrophoresis.J. biol. Chem. 252, 1102–6.

    Google Scholar 

  • Damiani, E., Betto, R., Salvatori, S., Volpe, P., Salviati, G. &Margreth, A. (1981) Polymorphism of sarcoplasmic reticulum adenosine triphosphatase of rabbit skeletal muscle.Biochem. J. 197, 245–8.

    Google Scholar 

  • Duggan, P. F. &Martonosi, A. (1970) IX. The permeability of sarcoplasmic reticulum membranes.J. gen. Physiol. 56, 147–57.

    Google Scholar 

  • Eastwood, A. B., Franzini-Armstrong, C. &Peracchia, C. (1982) Structure of membranes in crayfish muscle: comparison of phasic and tonic fibres.J. Musc. Res. Cell Motility 3, 273–94.

    Google Scholar 

  • Forbes, M. S. &Sperelakis, N. (1980) Membrane systems in skeletal muscle of the lizardAnolis carolinensis.J. Ultrastruct. Res. 73, 245–61.

    Google Scholar 

  • Franzini-Armstrong, C. (1977) The comparative structure of intracellular junctions in striated muscle fibers. InPathogenesis of Human Muscular Dystrophies (edited byRowland, L. P.), pp. 612–25. Amsterdam: Excerpta Medica.

    Google Scholar 

  • Franzini-Armstrong, C. &Nunzi, G. (1983) Junctional feet and particles in the triads of a fast-twitch muscle fibre.J. Musc. Res. Cell Motility 4, 233–52.

    Google Scholar 

  • Hager, D. A. &Burgess, R. R. (1980) Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity.Analyt. Biochem. 109, 76–86.

    Google Scholar 

  • Houmard, J. &Drapeau, G. R. (1982) Staphylococcal protease: a proteolytic enzyme specific for glutamoyl bonds.Proc. natn. Acad. Sci. U.S.A. 69, 3506–9.

    Google Scholar 

  • Ikemoto, N., Bhatnagar, G. M. &Gergely, J. (1971) Fractionation of solubilized sarcoplasmic reticulum.Biochem. Biophys. Res. Commun. 44, 1510–7.

    Google Scholar 

  • Jorgensen, A. O. &Campbell, K. P. (1984) Evidence for the presence of calsequestrin in two structurally different regions of myocardial sarcoplasmic reticulum.J. Cell Biol. 98, 1597–602.

    Google Scholar 

  • Jorgensen, A. O., Kalnins, V. &MacLennan, D. H. (1979) Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence.J. Cell Biol. 80, 372–84.

    Google Scholar 

  • Jorgensen, A. O., Shen, A. C. -Y. &Campbell, K. P. (1985) Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells.J. Cell Biol. 101, 257–68.

    Google Scholar 

  • Jorgensen, A. O., Shen, A. C. Y., Campbell, K. P. &MacLennan, D. H. (1983) Ultrastructural localization of calsequestrin in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections.J. Cell Biol. 97, 1573–81.

    Google Scholar 

  • Junker, J. &Sommer, J. (1979) Calsequestrin localization in rabbit and frog skeletal muscle by immunofluorescence.J. Cell Biol. 83, 384a.

    Google Scholar 

  • Kay, R. E., Walwick, E. R. &Gifford, C. K. (1964) Spectral changes in a cationic dye due to interaction with macromolecules. I. Behaviour of dye alone in solution and the effect of added macromolecules.J. phys. Chem. 68, 1896–906.

    Google Scholar 

  • Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature, Lond. 227, 680–4.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. &Randall, R. J. (1951) Protein measurements with the Folin phenol reagent.J. biol. Chem. 193, 265–75.

    Google Scholar 

  • MacLennan, D. H. (1974) Isolation of a second form of calsequestrin.J. biol. Chem. 249, 980–4.

    Google Scholar 

  • MacLennan, D. H. &Wong, P. T. S. (1971) Isolation of a calcium-sequestering protein from sarcoplasmic reticulum.Proc. natn. Acad. Sci. U.S.A. 68, 1231–5.

    Google Scholar 

  • MacLennan, D. H., Campbell, K. P. &Reithmeier, R. A. F. (1983) Calsequestrin. InCalcium and Cell Function (edited byMartonosi, A.), Vol 4, pp. 151–73. New York: Academic Press.

    Google Scholar 

  • Maurer, A., Tanaka, M., Ozawa, T. &Fleischer, S. (1985) Purification and crystallization of the calcium binding protein of sarcoplasmic reticulum from skeletal muscle.Proc. natn. Acad. Sci. U.S.A. 82, 4036–40.

    Google Scholar 

  • Meissner, G. (1975) Isolation and characterization of two types of sarcoplasmic reticulum vesicles.Biochim. biophys. Acta 389, 51–68.

    Google Scholar 

  • Michalak, M., Campbell, K. P. &MacLennan, D. H. (1980) Localization of the high affinity calcium binding protein and an intrinsic glycoprotein in sarcoplasmic reticulum membranes.J. biol. Chem. 255, 1317–26.

    Google Scholar 

  • O'Farrell, P. H. (1975) High resolution two-dimensional electrophoresis of proteins.J. biol. Chem. 250, 4007–21.

    Google Scholar 

  • Page, S. G. (1964) Structure and some contractile properties of fast and slow muscles of the chicken.J. Physiol., Lond. 205, 131–45.

    Google Scholar 

  • Sabbadini, R. A. &Okamoto, V. (1983) The distribution of ATPase activities in purified transverse tubular membranes.Archs Biochem. Biophys. 223, 107–19.

    Google Scholar 

  • Saito, A., Seiler, S., Chu, A. &Fleischer, S. (1984) Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle.J. Cell Biol. 99, 875–85.

    Google Scholar 

  • Salviati, G., Volpe, P., Salvatori, S., Betto, R., Damiani, E., Margreth, A. &Pasquali-Ronchetti, I. (1982) Biochemical heterogeneity of skeletalmuscle microsomal membranes. Membrane origin, membrane specificity and fiber types.Biochem. J. 202, 289–301.

    Google Scholar 

  • Somlyo, A. V., Gonzales-Serratos, H., Shuman, H., McClellan, G. &Somlyo, A. P. (1981) Calcium release and ionic changes in the sarcoplasmic reticulum of tetanized muscle: an electron-probe study.J. Cell Biol. 90, 577–94.

    Google Scholar 

  • Sommer, J. R. (1982) The anatomy of the sarcoplasmic reticulum in vertebrate skeletal muscle: its implications for excitation-contraction coupling.Z. Naturf. 37c, 665–8.

    Google Scholar 

  • Spray, T. L., Waugh, R. A. &Sommer, J. R. (1974) Peripheral couplings in adult vertebrate skeletal muscle.J. Cell Biol. 62, 223–7.

    Google Scholar 

  • Towbin, H., Staehelin, T. &Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications.Proc. natn. Acad. Sci. U.S.A. 76, 4350–4.

    Google Scholar 

  • Volpe, P., Biral, D., Damiani, E. &Margreth, A. (1981) Characterization of human muscle myosin with respect to the light chains.Biochem. J. 195, 251–8.

    Google Scholar 

  • Weber, K. &Osborn, M. (1969) The reliability of molecular weight determination by dodecyl sulphate polyacrylamide gel electrophoresis.J. biol. Chem. 244, 4406–10.

    Google Scholar 

  • White, D. M., Colwyn, R. T. &Denborough, M. A. (1983) A novel method for the isolation of calsequestrin from porcine skeletal muscle sarcoplasmic reticulum.Biochim. biophys. Acta 744, 1–6.

    Google Scholar 

  • Yap, J. L. &MacLennan, D. H. (1976) Characterization of the adenosinetriphosphatase and calsequestrin isolated from sarcoplasmic reticulum of normal and dystrophic chickens.Can. J. Biochem. 54, 670–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damiani, E., Salvatori, S., Zorzato, F. et al. Characteristics of skeletal muscle calsequestrin: comparison of mammalian, amphibian and avian muscles. J Muscle Res Cell Motil 7, 435–445 (1986). https://doi.org/10.1007/BF01753586

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01753586

Keywords

Navigation